31,251 research outputs found

    X(1812) in Quarkonia-Glueball-Hybrid Mixing Scheme

    Full text link
    Recently a JPC=0++J^{PC}=0^{++} (X(1812)) state with a mass near the threshold of ω\omega and ϕ\phi has been observed by the BES collaboration in J/ψ→γωϕJ/\psi \to \gamma \omega \phi decay. It has been suggested that it is a IG=0+I^G = 0^+ state. If it is true, this state fits in a mixing scheme based on quarkonia, glueball and hybrid (QGH) very nicely where five physical states are predicted. Together with the known f0(1370)f_0(1370), f0(1500)f_0(1500), f0(1710)f_0(1710), and f0(1790)f_0(1790) states, X(1812) completes the five members in this family. Using known experimental data on these particles we determine the ranges of the mixing parameters and predict decay properties for X(1812). We also discuss some features which may be able to distinguish between four-quark and hybrid mixing schemes.Comment: 15 pages, 2 figures, 3 table

    Local spin polarisation of electrons in Rashba semiconductor nanowires: effects of the bound state

    Full text link
    The local spin polarisation (LSP) of electrons in two typical semiconductor nanowires under the modulation of Rashba spin-orbit interaction (SOI) is investigated theoretically. The influence of both the SOI- and structure-induced bound states on the LSP is taken into account via the spin-resolved lattice Green function method. It is discovered that high spin-density islands with alternative signs of polarisation are formed inside the nanowires due to the interaction between the bound states and the Rashba effective magnetic field. Further study shows that the spin-density islands caused by the structure-induced bound state exhibit a strong robustness against disorder. These findings may provide an efficient way to create local magnetic moments and store information in semiconductors.Comment: 8 pages, 3 figure

    Investigation of the hydrodynamic behaviour of particles and aggregates by particle image velocimetry (PIV)

    Get PDF
    Proceedings of the International Symposium on Sustainable and Safe Water Supplies, Hong Kong, China, 15-17 January 2007.An advanced fluid visualisation technique, particle image velocimetry, was employed to investigate the hydrodynamic properties of particles and aggregates. The experiments were conducted in a settling column filled with a suspension of fluorescent polymeric beads as flow tracers. A thin vertical section of the settling column was illuminated by a laser sheet, while the motions of particles were recorded by a high speed CCD camera. Large solid spheres, flocs of latex microspheres and aggregates of marine diatoms were characterised for their hydrodynamic properties. The trajectories of the tracer particles were tracked when a large particle or aggregate settled through the suspension of the tracers, which gave the streamlines surrounding the falling object. The streamlines demonstrate directly the curvilinear feature of the interaction between approaching particles. However, the available curvilinear model underestimates the collision frequency function of particles by one order of magnitude or two. The collision potentials of the flocs and aggregates are more than an order of magnitude greater than the similar-sized solid spheres. Algal aggregates appear to be highly porous and fractal with a fluid collection efficiency of 10-40%, which would significantly enhance the flocculation between particles and the mass transfer into the aggregates. © IWA Publishing 2007.postprin

    Cavity QED treatment of scattering-induced efficient free-space excitation and collection in high-Q whispering-gallery microcavities

    Full text link
    Whispering-gallery microcavity laser possesses ultralow threshold, whereas convenient free-space optical excitation and collection suffer from low efficiencies due to its rotational symmetry. Here we analytically study a three-dimensional microsphere coupled to a nano-sized scatterer in the framework of quantum optics. It is found that the scatterer is capable of coupling light in and out of the whispering-gallery modes (WGMs) without seriously degrading their high-Q properties, while the microsphere itself plays the role of a lens to focus the input beam on the scatterer and vice versa. Our analytical results show that (1) the high-Q WGMs can be excited in free space, and (2) over 50% of the microcavity laser emission can be collected within less than 1∘{1}^{\circ}. This coupling system holds great potential for low threshold microlasers free of external couplers.Comment: 10 pages, 8 figure

    Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator

    Full text link
    We propose a hybrid photonic-plasmonic resonant structure which consists of a metal nanoparticle (MNP) and a whispering gallery mode (WGM) microcavity. It is found that the hybrid mode enables a strong interaction between the light and matter, and the single-atom cooperativity is enhanced by more than two orders of magnitude compared to that in a bare WGM microcavity. This remarkable improvement originates from two aspects: (1) the MNP offers a highly enhanced local field in the vicinity of an emitter, and (2), surprisingly, the high-\textit{Q} property of WGMs can be maintained in the presence of the MNP. Thus the present system has great advantages over a single microcavity or a single MNP, and holds great potential in quantum optics, nonlinear optics and highly sensitive biosening.Comment: 5 pages, 4 figure

    Spinor field realizations of the non-critical W2,4W_{2,4} string based on the linear W1,2,4W_{1,2,4} algebra

    Full text link
    In this paper, we investigate the spinor field realizations of the W2,4W_{2,4} algebra, making use of the fact that the W2,4W_{2,4} algebra can be linearized through the addition of a spin-1 current. And then the nilpotent BRST charges of the spinor non-critical W2,4W_{2,4} string were built with these realizations.Comment: 10 pages, no figures, revtex4 style, accepted by Commun.Theor.Phy
    • …
    corecore