4,265 research outputs found

    Effects of density-dependent quark mass on phase diagram of three-flavor quark matter

    Full text link
    Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark msm_s is small, the strange quark matter remains stable unless the baryon density is very high. If msm_s is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.Comment: 4 figure

    Disease Considerations for 2011 Soybean Variety Selection

    Get PDF
    As producers plan for the 2011 soybean growing season, many will make disease management a high priority because of the outbreaks of sudden death syndrome (SDS) in 2010. Some soybean producers will select soybean varieties for the coming season according to what happened during the last season. While picking up SDS resistant or tolerance varieties may seem to be a good decision, the risk of white mold should be considered as well, particularly in northern Iowa where white mold was wide spread in 2009. It is too early to say what disease may have outbreaks for the coming season

    Cascading failures in coupled networks with both inner-dependency and inter-dependency links

    Full text link
    We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that when most of dependency links are inner- or inter-ones, the coupled networks system is fragile and makes a discontinuous percolation transition. However, when the numbers of two types of dependency links are close to each other, the system is robust and makes a continuous percolation transition. This indicates that the high density of dependency links could not always lead to a discontinuous percolation transition as the previous studies. More interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two types of dependency links, there exists a critical average degree of the networks for coupled random networks, below which the crossover of the two types of percolation transitions disappears, and the system will always demonstrate a discontinuous percolation transition. We also develop an approach to analyze this model, which is agreement with the simulation results well.Comment: 9 pages, 4 figure
    corecore