33,835 research outputs found
Mode-Seeking on Hypergraphs for Robust Geometric Model Fitting
In this paper, we propose a novel geometric model fitting method, called
Mode-Seeking on Hypergraphs (MSH),to deal with multi-structure data even in the
presence of severe outliers. The proposed method formulates geometric model
fitting as a mode seeking problem on a hypergraph in which vertices represent
model hypotheses and hyperedges denote data points. MSH intuitively detects
model instances by a simple and effective mode seeking algorithm. In addition
to the mode seeking algorithm, MSH includes a similarity measure between
vertices on the hypergraph and a weight-aware sampling technique. The proposed
method not only alleviates sensitivity to the data distribution, but also is
scalable to large scale problems. Experimental results further demonstrate that
the proposed method has significant superiority over the state-of-the-art
fitting methods on both synthetic data and real images.Comment: Proceedings of the IEEE International Conference on Computer Vision,
pp. 2902-2910, 201
- …