263 research outputs found

    Level-S2^2fM: Structure from Motion on Neural Level Set of Implicit Surfaces

    Full text link
    This paper presents a neural incremental Structure-from-Motion (SfM) approach, Level-S2^2fM. In our formulation, we aim at simultaneously learning coordinate MLPs for the implicit surfaces and the radiance fields, and estimating the camera poses and scene geometry, which is mainly sourced from the established keypoint correspondences by SIFT. Our formulation would face some new challenges due to inevitable two-view and few-view configurations at the beginning of incremental SfM pipeline for the optimization of coordinate MLPs, but we found that the strong inductive biases conveying in the 2D correspondences are feasible and promising to avoid those challenges by exploiting the relationship between the ray sampling schemes used in volumetric rendering and the sphere tracing of finding the zero-level set of implicit surfaces. Based on this, we revisit the pipeline of incremental SfM and renew the key components of two-view geometry initialization, the camera pose registration, and the 3D points triangulation, as well as the Bundle Adjustment in a novel perspective of neural implicit surfaces. Because the coordinate MLPs unified the scene geometry in small MLP networks, our Level-S2^2fM treats the zero-level set of the implicit surface as an informative top-down regularization to manage the reconstructed 3D points, reject the outlier of correspondences by querying SDF, adjust the estimated geometries by NBA (Neural BA), finally yielding promising results of 3D reconstruction. Furthermore, our Level-S2^2fM alleviated the requirement of camera poses for neural 3D reconstruction.Comment: under revie

    Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation

    Full text link
    Contemporary domain adaptation offers a practical solution for achieving cross-domain transfer of semantic segmentation between labeled source data and unlabeled target data. These solutions have gained significant popularity; however, they require the model to be retrained when the test environment changes. This can result in unbearable costs in certain applications due to the time-consuming training process and concerns regarding data privacy. One-shot domain adaptation methods attempt to overcome these challenges by transferring the pre-trained source model to the target domain using only one target data. Despite this, the referring style transfer module still faces issues with computation cost and over-fitting problems. To address this problem, we propose a novel framework called Informative Data Mining (IDM) that enables efficient one-shot domain adaptation for semantic segmentation. Specifically, IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training. We then perform a model adaptation method using these selected samples, which includes patch-wise mixing and prototype-based information maximization to update the model. This approach effectively enhances adaptation and mitigates the overfitting problem. In general, we provide empirical evidence of the effectiveness and efficiency of IDM. Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7\%/55.4\% on the GTA5/SYNTHIA to Cityscapes adaptation tasks, respectively. The code will be released at \url{https://github.com/yxiwang/IDM}.Comment: Accepted by ICCV 202

    A corpusā€based discourse analysis of liberal studies textbooks in Hong Kong: legitimatizing populism

    Get PDF
    Researchers have discussed Hong Kongā€™s localist identities, nativist sentiments, and populism, but have not widely examined the extent to which populism could be perceived in education in Hong Kong. As the chief participants of the Occupying Central and the radical Anti-Extradition Bill movements in Hong Kong were students, this suggests the need to explore the relationship between populism and education, particularly the then-controversial liberal studies textbooks. According to contemporary news reports, liberal studies textbooks contained much content stigmatising the Chinese mainland. Previous studies of liberal studies textbooks applied qualitative discourse analysis methods. In this study, mixed-method analysis was applied to a specialised corpus comprising seven commercial liberal studies textbooks containing 248,339 Chinese characters in total to explore the extent to which liberal studies textbooks contain information concerning the key features of populismā€”the heightened division between the inner and outer groups. A division was found between positive images of Hong Kong and negative images of China in the narratives of commercial liberal studies textbooks. Accordingly, the textbooks can be understood to contain populism. The present study advocates that relevant educational watchdogs in Hong Kong provide more guidance on the writing and publishing of liberal studies textbooks in the future, keeping the enquiry-based spirit of the liberal studies course fulfilled, and urges stakeholders of Hong Kong education to consider teaching peace education and developing a more inclusive environment

    Volumetric Wireframe Parsing from Neural Attraction Fields

    Full text link
    The primal sketch is a fundamental representation in Marr's vision theory, which allows for parsimonious image-level processing from 2D to 2.5D perception. This paper takes a further step by computing 3D primal sketch of wireframes from a set of images with known camera poses, in which we take the 2D wireframes in multi-view images as the basis to compute 3D wireframes in a volumetric rendering formulation. In our method, we first propose a NEural Attraction (NEAT) Fields that parameterizes the 3D line segments with coordinate Multi-Layer Perceptrons (MLPs), enabling us to learn the 3D line segments from 2D observation without incurring any explicit feature correspondences across views. We then present a novel Global Junction Perceiving (GJP) module to perceive meaningful 3D junctions from the NEAT Fields of 3D line segments by optimizing a randomly initialized high-dimensional latent array and a lightweight decoding MLP. Benefitting from our explicit modeling of 3D junctions, we finally compute the primal sketch of 3D wireframes by attracting the queried 3D line segments to the 3D junctions, significantly simplifying the computation paradigm of 3D wireframe parsing. In experiments, we evaluate our approach on the DTU and BlendedMVS datasets with promising performance obtained. As far as we know, our method is the first approach to achieve high-fidelity 3D wireframe parsing without requiring explicit matching.Comment: Technical report; Video can be found at https://youtu.be/qtBQYbOpVp

    DiffusePast: Diffusion-based Generative Replay for Class Incremental Semantic Segmentation

    Full text link
    The Class Incremental Semantic Segmentation (CISS) extends the traditional segmentation task by incrementally learning newly added classes. Previous work has introduced generative replay, which involves replaying old class samples generated from a pre-trained GAN, to address the issues of catastrophic forgetting and privacy concerns. However, the generated images lack semantic precision and exhibit out-of-distribution characteristics, resulting in inaccurate masks that further degrade the segmentation performance. To tackle these challenges, we propose DiffusePast, a novel framework featuring a diffusion-based generative replay module that generates semantically accurate images with more reliable masks guided by different instructions (e.g., text prompts or edge maps). Specifically, DiffusePast introduces a dual-generator paradigm, which focuses on generating old class images that align with the distribution of downstream datasets while preserving the structure and layout of the original images, enabling more precise masks. To adapt to the novel visual concepts of newly added classes continuously, we incorporate class-wise token embedding when updating the dual-generator. Moreover, we assign adequate pseudo-labels of old classes to the background pixels in the new step images, further mitigating the forgetting of previously learned knowledge. Through comprehensive experiments, our method demonstrates competitive performance across mainstream benchmarks, striking a better balance between the performance of old and novel classes.Comment: e.g.: 13 pages, 7 figure

    CoDeF: Content Deformation Fields for Temporally Consistent Video Processing

    Full text link
    We present the content deformation field CoDeF as a new type of video representation, which consists of a canonical content field aggregating the static contents in the entire video and a temporal deformation field recording the transformations from the canonical image (i.e., rendered from the canonical content field) to each individual frame along the time axis.Given a target video, these two fields are jointly optimized to reconstruct it through a carefully tailored rendering pipeline.We advisedly introduce some regularizations into the optimization process, urging the canonical content field to inherit semantics (e.g., the object shape) from the video.With such a design, CoDeF naturally supports lifting image algorithms for video processing, in the sense that one can apply an image algorithm to the canonical image and effortlessly propagate the outcomes to the entire video with the aid of the temporal deformation field.We experimentally show that CoDeF is able to lift image-to-image translation to video-to-video translation and lift keypoint detection to keypoint tracking without any training.More importantly, thanks to our lifting strategy that deploys the algorithms on only one image, we achieve superior cross-frame consistency in processed videos compared to existing video-to-video translation approaches, and even manage to track non-rigid objects like water and smog.Project page can be found at https://qiuyu96.github.io/CoDeF/.Comment: Project Webpage: https://qiuyu96.github.io/CoDeF/, Code: https://github.com/qiuyu96/CoDe

    UGC: Unified GAN Compression for Efficient Image-to-Image Translation

    Full text link
    Recent years have witnessed the prevailing progress of Generative Adversarial Networks (GANs) in image-to-image translation. However, the success of these GAN models hinges on ponderous computational costs and labor-expensive training data. Current efficient GAN learning techniques often fall into two orthogonal aspects: i) model slimming via reduced calculation costs; ii)data/label-efficient learning with fewer training data/labels. To combine the best of both worlds, we propose a new learning paradigm, Unified GAN Compression (UGC), with a unified optimization objective to seamlessly prompt the synergy of model-efficient and label-efficient learning. UGC sets up semi-supervised-driven network architecture search and adaptive online semi-supervised distillation stages sequentially, which formulates a heterogeneous mutual learning scheme to obtain an architecture-flexible, label-efficient, and performance-excellent model
    • ā€¦
    corecore