122 research outputs found

    Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3

    Get PDF
    Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin αIIbβ3 on platelets, resulting in platelet aggregation. αvβ3 binds fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's α subunit. αIIbβ3 also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the γ subunit (γC peptide). These distinct modes of fibrinogen binding enable αIIbβ3 and αvβ3 to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin αIIbβ3–γC peptide interface, and, for comparison, integrin αIIbβ3 bound to a lamprey γC primordial RGD motif. Compared with RGD, the GAKQAGDV motif in γC adopts a different backbone configuration and binds over a more extended region. The integrin metal ion–dependent adhesion site (MIDAS) Mg2+ ion binds the γC Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca2+ ion binds the γC C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered γC peptide enhances our understanding of the involvement of γC peptide and integrin αIIbβ3 in hemostasis and thrombosis

    Structure of a rat α1-macroglobulin receptor-binding domain dimer

    Get PDF
    α-Macroglobulin inhibits a broad spectrum of proteinases by forming macromolecular cages inside which proteinases are cross-linked and trapped. Upon formation of a complex with proteinase, α-macroglobulin undergoes a large conformational change that results in the exposure of its receptor-binding domain (RBD). Engagement of this domain by α-macroglobulin receptor permits clearance of the α-macroglobulin: proteinase complex from circulation. The crystal structure of rat α1-macroglobulin RBD has been determined at 2.3 Å resolution. The RBD is composed of a nine-stranded β-sandwich and a single α-helix that has been implicated as part of the receptor binding site and that lies on the surface of the β-sandwich. The crystallographic asymmetric unit contains a dimer of RBDs related by approximate twofold symmetry such that the putative receptor recognition sites of the two monomers are contiguous. By gel filtration and ultracentrifugation, it is shown that RBD dimers form in solution with a dissociation constant of ≃50μM. The structure of the RBD dimer might mimic a conformation of transformed α-macroglobulin in which the proposed receptor binding residues are exposed on one face of the dimer. A pair of phenylalanine residues replaces a cystine that is conserved in other members of the macroglobulin family. These residues participate in a network of aromatic side-chain interactions that appears to stabilize the dimer interface

    Cosolvent-induced transformation of a death domain tertiary structure

    Get PDF
    The death domain (DD) of the protein kinase Pelle adopts a six-helix bundle fold in the crystal structure of the complex with its dimerization partner, Tube-DD. However, in crystals obtained from a solution of 45% 2-methyl-2,4-pentanediol (MPD), the C-terminal half of Pelle-DD folds into a single helix, and the N-terminal half of the molecule is disordered. The helical segment forms an antiparallel dimer with the corresponding helix of a symmetry-related molecule, and together they form extensive lattice interactions similar in number, composition, and buried surface to those in the six-helix bundle of the native fold. Secondary structure analysis by heteronuclear nuclear magnetic resonance spectroscopy (NMR) demonstrates that Pelle-DD adopts a six-helix bundle fold in aqueous solution. The fold is perturbed by MPD, with the largest chemical shift changes in one helix and two loop regions that encompass the Tube-DD binding site. Pelle-DD is stable to urea denaturation with a folding free energy of 7.9 kcal/mol at 25 degrees C but is destabilized, with loss of urea binding sites, in the presence of MPD. The data are consistent with a cosolvent denaturation model in which MPD denatures the N terminus of Pelle-DD but induces the C terminus to form a more compact structure and aggregate. A similar perturbation in vivo might occur at the plasma membrane and could have consequences for Pelle-mediated regulation. Generally, crystallographers should be aware that high concentrations of MPD or related cosolvents can alter the tertiary structure of susceptible proteins

    Three-dimensional structure of a complex between the death domains of pelle and tube

    Get PDF
    The interaction of the serine/threonine kinase Pelle and adaptor protein Tube through their N-terminal death domains leads to the nuclear translocation of the transcription factor Dorsal and activation of zygotic patterning genes during Drosophila embryogenesis. Crystal structure of the Pelle and Tube death domain heterodimer reveals that the two death domains adopt a six-helix bundle fold and are arranged in an open-ended linear array with plastic interfaces mediating their interactions. The Tube death domain has an insertion between helices 2 and 3, and a C-terminal tail making significant and indispensable contacts in the heterodimer. In vivo assays of Pelle and Tube mutants confirmed that the integrity of the major heterodimer interface is critical to the activity of these molecules

    Structure of a Complete Integrin Ectodomain in a Physiologic Resting State and Activation and Deactivation by Applied Forces

    Get PDF
    The complete ectodomain of integrin αIIbβ3 reveals a bent, closed, low-affinity conformation, the β knee, and a mechanism for linking cytoskeleton attachment to high affinity for ligand. Ca and Mg ions in the recognition site, including the synergistic metal ion binding site (SyMBS), are loaded prior to ligand binding. Electrophilicity of the ligand-binding Mg ion is increased in the open conformation. The β3 knee passes between the β3-PSI and αIIb-knob to bury the lower β leg in a cleft, from which it is released for extension. Different integrin molecules in crystals and EM reveal breathing that appears on pathway to extension. Tensile force applied to the extended ligand-receptor complex stabilizes the closed, low-affinity conformation. By contrast, an additional lateral force applied to the β subunit to mimic attachment to moving actin filaments stabilizes the open, high-affinity conformation. This mechanism propagates allostery over long distances and couples cytoskeleton attachment of integrins to their high-affinity state. © 2008 Elsevier Inc. All rights reserved

    The Phe105 Loop of Alix Bro1 Domain Plays a Key Role in HIV-1 Release

    Get PDF
    SummaryAlix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical “boomerang” folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix

    LATS kinase-mediated CTCF phosphorylation and selective loss of genomic binding.

    Get PDF
    Chromatin topological organization is instrumental in gene transcription. Gene-enhancer interactions are accommodated in the same CTCF-mediated insulated neighborhoods. However, it remains poorly understood whether and how the 3D genome architecture is dynamically restructured by external signals. Here, we report that LATS kinases phosphorylated CTCF in the zinc finger (ZF) linkers and disabled its DNA-binding activity. Cellular stress induced LATS nuclear translocation and CTCF ZF linker phosphorylation, and altered the landscape of CTCF genomic binding partly by dissociating it selectively from a small subset of its genomic binding sites. These sites were highly enriched for the boundaries of chromatin domains containing LATS signaling target genes. The stress-induced CTCF phosphorylation and locus-specific dissociation from DNA were LATS-dependent. Loss of CTCF binding disrupted local chromatin domains and down-regulated genes located within them. The study suggests that external signals may rapidly modulate the 3D genome by affecting CTCF genomic binding through ZF linker phosphorylation

    Role of the CCAAT-Binding Protein NFY in SCA17 Pathogenesis

    Get PDF
    Spinocerebellar ataxia 17 (SCA17) is caused by expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) that is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The precise pathogenic mechanism in SCA17 remains unclear. Previously proteomics study using a cellular model of SCA17 has revealed reduced expression of heat shock 70 kDa protein 5 (HSPA5) and heat shock 70 kDa protein 8 (HSPA8), suggesting that impaired protein folding may contribute to the cell dysfunction of SCA17 (Lee et al., 2009). In lymphoblastoid cells, HSPA5 and HSPA8 expression levels in cells with mutant TBP were also significantly lower than that of the control cells (Chen et al., 2010). As nuclear transcription factor Y (NFY) has been reported to regulate HSPA5 transcription, we focused on if NFY activity and HSPA5 expression in SCA17 cells are altered. Here, we show that TBP interacts with NFY subunit A (NFYA) in HEK-293 cells and NFYA incorporated into mutant TBP aggregates. In both HEK-293 and SH-SY5Y cells expressing TBP/Q61∼79, the level of soluble NFYA was significantly reduced. In vitro binding assay revealed that the interaction between TBP and NFYA is direct. HSPA5 luciferase reporter assay and endogenous HSPA5 expression analysis in NFYA cDNA and siRNA transfection cells further clarified the important role of NFYA in regulating HSPA5 transcription. In SCA17 cells, HSPA5 promoter activity was activated as a compensatory response before aggregate formation. NFYA dysfunction was indicated in SCA17 cells as HSPA5 promoter activity reduced along with TBP aggregate formation. Because essential roles of HSPA5 in protection from neuronal apoptosis have been shown in a mouse model, NFYA could be a target of mutant TBP in SCA17
    corecore