4,095 research outputs found

    PPAR α and PPAR γ Polymorphisms as risk factors for Dyslipidemia in a Chinese han population

    Get PDF
    BACKGROUND: The PPAR α and PPAR γ are the key messengers responsible for the translation of nutritional stimuli into changes for the expression of genes, particularly genes involved in lipid metabolism. However, the associations between PPAR α / γ polymorphisms and lipid serum levels in the general population were rarely studied, and the conclusions were conflicting. The objective was to investigate the associations of the PPAR α and PPAR γ polymorphisms with dyslipidemia. METHODS: 820 subjects were randomly selected from the Prevention of Multiple Metabolic Disorders and MS in Jiangsu Province cohort populations. The logistic regression model was used to examine the association between these polymorphisms and dyslipidemia. SNPstats was used to explore the haplotype association analyses. RESULTS: In the codominant and log-additive models, rs1800206, rs1805192 and rs3856806 were all associated with dyslipidemia (P < 0.005). When the most common haplotype L-G (established by rs1800206, rs4253778) was treated as the reference group, the V-G haplotype was associated with dyslipidemia (P < 0.001), higher TC and TG levels (P < 0.01). Moreover, when compared to Pro-C haplotype (established by rs1805192, rs3856806), the Pro-T, Ala-C, Ala-T haplotypes were associated with dyslipidemia (p < 0.001). A-T haplotype was associated with higher TC levels, (p < 0.01), and the P-T, A-C, A-T haplotypes were associated with higher TG levels (p < 0.01). CONCLUSIONS: PPAR α and PPAR γ polymorphisms and haplotypes may be the genetic risk factors for dyslipidemia

    The Effect of Nano-Aluminumpowder on the Characteristic of RDX based Aluminized Explosives Underwater Close-Filed Explosion

    Full text link
    In order to investigate the effect of nano-aluminum powder on the characteristic of RDX based aluminized explosives underwater closed-filed explosions, the scanning photographs along the radial of the charges were gained by a high speed scanning camera. The photographs of two different aluminized explosives underwater explosion have been analyzed, the shock wave curves and expand curves of detonation products were obtained, furthermore the change rules of shock waves propagation velocity, shock front pressure and expansion of detonation products of two aluminized explosives were investigated, and also the parameters of two aluminized explosives were contrasted. The results show that the aluminized explosive which with nano-aluminum whose initial shock waves pressure propagation velocity, shock front pressure are smaller than the aluminized explosive without nano-aluminum and has lower decrease rate attenuation of energy

    Neutron star phase transition as the origin for the fast radio bursts and soft gamma-ray repeaters of SGR J1935+2154

    Full text link
    Magnetars are believed as neutron stars (NSs) with strong magnetic fields. X-ray flares and fast radio bursts (FRBs) have been observed from the magnetar (soft gamma-ray repeater, SGR J1935+2154). We propose that the phase transition of the NS can power the FRBs and SGRs.Based on the equation of state provided by the MIT bag model and the mean field approximation, we solve the Tolman-Oppenheimer-Volkoff equations to get the NS structure. With spin-down of the NS, the hadronic shell gradually transfers to the quark shell.The gravitational potential energy released by one time of the phase transition can be achieved. The released energy, time interval between two successive phase transitions, and glitch are all consistent with the observations of the FRBs and the X-ray flares from SGR J1935+2154. We conclude that the phase transition of an NS is a plausible mechanism to power the SGRs as well as the repeating FRBs.Comment: 11 pages, 3 figure

    14,15-Didehydro­hellebrigenin

    Get PDF
    The title compound, C24H30O5, is the didehydro product of the steroid hellebrigenin (systematic name: 3β,5,14-trihy­droxy-19-oxo-5β-bufa-20,22-dienolide). It consists of three cyclo­hexane rings (A, B and C), a five-membered ring (D) and a six-membered lactone ring (E). The stereochemistry of the ring junctions are A/B cis, B/C trans and C/D cis. Cyclo­hexane rings A, B and C have normal chair conformations. The five-membered ring D with the C=C bond adopts an envelope conformation. Lactone ring E is essentially planar with a mean derivation of 0.006 (4) Å and is β-oriented at the C atom of ring D to which it is attached. There is an O—H⋯O hydrogen bond in the mol­ecule involving the hy­droxy groups. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into chains propagating along [010]. The chains are linked by C—H⋯O contacts into a three-dimensional network

    Deconfined quantum criticality with emergent symmetry in the extended Shastry-Sutherland model

    Full text link
    Motivated by the exotic critical phenomena observed in the Shastry-Sutherland material SrCu2(BO3)2\rm SrCu_2(BO_3)_2 \blue{[Jimenez {\it et al}, Nature {\bf 592}, 370 (2021); Cui {\it et al}, Science {\bf 380}, 1179 (2023)]}, we investigate the ground state nature of the extended Shastry-Sutherland model (SSM) by the state-of-the-art 2D tensor network method. Via large-scale simulations up to 20×2020\times 20 sites, we identify a continuous phase transition between the plaquette valence-bond solid (PVBS) phase and the antiferromagnetic (AFM) phase accompanied by an emergent O(4) symmetry, which strongly suggests a deconfined quantum critical point (DQCP). Furthermore, we map out the phase diagram of the extended SSM and observe the same type of DQCP phenomena with emergent O(4) symmetry and similar critical exponents along the whole critical line. Our results indicate a compelling scenario for understanding the origin of the proximate DQCP observed in recent experiments.Comment: 5+6 pages; 4+5 figures; 3 table

    Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases

    Get PDF
    Reactive oxygen species (ROS) play a crucial role in the inflammatory response and cytokine outbreak, such as during virus infections, diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. Therefore, antioxidant is an important medicine to ROS-related diseases. For example, ascorbic acid (vitamin C, VC) was suggested as the candidate antioxidant to treat multiple diseases. However, long-term use of high-dose VC causes many side effects. In this review, we compare and analyze all kinds of mitochondrion-permeable antioxidants, including edaravone, idebenone, α-Lipoic acid, carotenoids, vitamin E, and coenzyme Q10, and mitochondria-targeted antioxidants MitoQ and SkQ and propose astaxanthin (a special carotenoid) to be the best antioxidant for ROS-burst-mediated acute diseases, like avian influenza infection and ischemia-reperfusion. Nevertheless, astaxanthins are so unstable that most of them are inactivated after oral administration. Therefore, astaxanthin injection is suggested hypothetically. The drawbacks of the antioxidants are also reviewed, which limit the use of antioxidants as coadjuvants in the treatment of ROS-associated disorders

    catena-poly[[[(2,2′-bipyridine-2κ2 N,N′)-μ-cyanido-1:2κ2 N:C-cyanido-2κC-tris­(methanol-1κO)(nitrato-1κ2 O,O′)iron(II)yttrium(III)]-di-μ-cyanido-1:2′κ2 N:C;2:1′κ2 C:N] methanol solvate hemihydrate]

    Get PDF
    The title complex, {[FeIIYIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH·0.5H2O}n, is built up of ladder-like chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and YIII ions connected by cyanide bridges. Two such parallel chains are connected by additional cyanide anions (the ‘rungs’ of the ladder), which likewise connect FeII and YIII ions, such that each [Fe(bipy)(CN)4]2− (bipy is 2,2′-bipyridine) unit coordinates with three YIII ions and each YIII ion connects with three different [Fe(bipy)(CN)4]2− units. The FeII atom is six-coordinated in a distorted octa­hedral geometry and the YIII atom cation is eight-coordinated in a distorted dodeca­hedral environment. The uncoordinated methanol solvent mol­ecules are involved in hydrogen-bonding inter­actions with the one terminal cyanide group and a coordinated methanol mol­ecule from another [YIII(NO3)(CH3OH)3]2+ unit. Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the [Fe(CN)4(bipy)]2− units in one chain and the OH donors of CH3OH ligands from [YIII(NO3)(CH3OH)3] units in neighboring chains. The water molecule exhibits half-occupation
    corecore