192 research outputs found

    Peridynamic open-hole tensile strength prediction of fiber-reinforced composite laminate using energy-based failure criteria

    Get PDF
    In the present study, peridynamic (PD) open-hole tensile (OHT) strength prediction of fiber-reinforced composite laminate using energy-based failure criteria is conducted. Spherical-horizon peridynamic laminate theory (PDLT) model is used. Energy-based failure criteria are introduced into the model. Delamination fracture modes can be distinguished in the present energy-based failure criteria. Three OHT testing results of fiber-reinforced composite laminate are chosen from literatures and used as benchmarks to validate the present PD composite model with energy-based failure criteria. It is shown that the PD predicted OHT strength fits the experimental results quite well. From the predicted displacement field, the fracture surface can be clearly detected. Typical damage modes of composite, fiber breakage, matrix crack, and delamination, are also illustrated in detail for each specimen. Numerical results in the present study validate the accuracy and reliability of the present PD composite model with energy-based failure criteria

    Peridynamic modeling of mode-I delamination growth in double cantilever composite beam test: a two-dimensional modeling using revised energy-based failure criteria

    Get PDF
    This study presents a two-dimensional ordinary state-based peridynamic (OSB PD) modeling of mode-I delamination growth in a double cantilever composite beam (DCB) test using revised energy-based failure criteria. The two-dimensional OSB PD composite model for DCB modeling is obtained by reformulating the previous OSB PD lamina model in x–z direction. The revised energy-based failure criteria are derived following the approach of establishing the relationship between critical bond breakage work and energy release rate. Loading increment convergence analysis and grid spacing influence study are conducted to investigate the reliability of the present modeling. The peridynamic (PD) modeling load–displacement curve and delamination growth process are then quantitatively compared with experimental results obtained from standard tests of composite DCB samples, which show good agreement between the modeling results and experimental results. The PD modeling delamination growth process damage contours are also illustrated. Finally, the influence of the revised energy-based failure criteria is investigated. The results show that the revised energy-based failure criteria improve the accuracy of the PD delamination modeling of DCB test significantly

    Identification of the cell cycle characteristics of non-small cell lung cancer and its relationship with tumor immune microenvironment, cell death pathways, and metabolic reprogramming

    Get PDF
    BackgroundThe genes related to the cell cycle progression could be considered the key factors in human cancers. However, the genes involved in cell cycle regulation in non-small cell lung cancer (NSCLC) have not yet been reported. Therefore, it is necessary to evaluate the genes related to the cell cycle in all types of cancers, especially NSCLC.MethodsThis study constituted the first pan-cancer landscape of cell cycle signaling. Cluster analysis based on cell cycle signaling was conducted to identify the potential molecular heterogeneity of NSCLC. Further, the discrepancies in the tumor immune microenvironment, metabolic remodeling, and cell death among the three clusters were investigated. Immunohistochemistry was performed to validate the protein levels of the ZWINT gene and examine its relationship with the clinical characteristics. Bioinformatics analyses and experimental validation of the ZWINT gene were also conducted.ResultsFirst, pan-cancer analysis provided an overview of cell cycle signaling and highlighted its crucial role in cancer. A majority of cell cycle regulators play risk roles in lung adenocarcinoma (LUAD); however, some cell cycle genes play protective roles in lung squamous cell carcinoma (LUSC). Cluster analysis revealed three potential subtypes for patients with NSCLC. LUAD patients with high cell cycle activities were associated with worse prognosis; while, LUSC patients with high cell cycle activities were associated with a longer survival time. Moreover, the above three subtypes of NSCLC exhibited distinct immune microenvironments, metabolic remodeling, and cell death pathways. ZWINT, a member of the cell signaling pathway, was observed to be significantly associated with the prognosis of LUAD patients. A series of experiments verified the higher expression levels of ZWINT in NSCLC compared to those in paracancerous tissues. The activation of epithelial-mesenchymal transition (EMT) induced by ZWINT might be responsible for tumor progression.ConclusionThis study revealed the regulatory function of the cell cycle genes in NSCLC, and the molecular classification based on cell cycle-associated genes could evaluate the different prognoses of patients with NSCLC. ZWINT expression was found to be significantly upregulated in NSCLC tissues, which might promote tumor progression via activation of the EMT pathway

    Sexually dimorphic genetic architecture of complex traits in a large-scale F2 cross in pigs

    Get PDF
    BACKGROUND: It is common for humans and model organisms to exhibit sexual dimorphism in a variety of complex traits. However, this phenomenon has rarely been explored in pigs. RESULTS: To investigate the genetic contribution to sexual dimorphism in complex traits in pigs, we conducted a sex-stratified analysis on 213 traits measured in 921 individuals produced by a White Duroc × Erhualian F(2) cross. Of the 213 traits examined, 102 differed significantly between the two sexes (q value <0.05), which indicates that sex is an important factor that influences a broad range of traits in pigs. We compared the estimated heritability of these 213 traits between males and females. In particular, we found that traits related to meat quality and fatty acid composition were significantly different between the two sexes, which shows that genetic factors contribute to variation in sexual dimorphic traits. Next, we performed a genome-wide association study (GWAS) in males and females separately; this approach allowed us to identify 13.6% more significant trait-SNP (single nucleotide polymorphism) associations compared to the number of associations identified in a GWAS that included both males and females. By comparing the allelic effects of SNPs in the two sexes, we identified 43 significant sexually dimorphic SNPs that were associated with 22 traits; 41 of these 43 loci were autosomal. The most significant sexually dimorphic loci were found to be associated with muscle hue angle and Minolta a* values (which are parameters that reflect the redness of meat) and were located between 9.3 and 10.7 Mb on chromosome 6. A nearby gene i.e. NUDT7 that plays an important role in heme synthesis is a strong candidate gene. CONCLUSIONS: This study illustrates that sex is an important factor that influences phenotypic values and modifies the effects of the genetic variants that underlie complex traits in pigs; it also emphasizes the importance of stratifying by sex when performing GWAS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12711-014-0076-2) contains supplementary material, which is available to authorized users

    Fine mapping of a QTL for ear size on porcine chromosome 5 and identification of high mobility group AT-hook 2 (HMGA2) as a positional candidate gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ear size and shape are distinct conformation characteristics of pig breeds. Previously, we identified a significant quantitative trait locus (QTL) influencing ear surface on pig chromosome 5 in a White Duroc × Erhualian F<sub>2 </sub>resource population. This QTL explained more than 17% of the phenotypic variance.</p> <p>Methods</p> <p>Four new markers on pig chromosome 5 were genotyped across this F<sub>2 </sub>population. RT-PCR was performed to obtain expression profiles of different candidate genes in ear tissue. Standard association test, marker-assisted association test and F-drop test were applied to determine the effects of single nucleotide polymorphisms (SNP) on ear size. Three synthetic commercial lines were also used for the association test.</p> <p>Results</p> <p>We refined the QTL to an 8.7-cM interval and identified three positional candidate genes i.e. <it>HMGA2</it>, <it>SOX5 </it>and <it>PTHLH </it>that are expressed in ear tissue. Seven SNP within these three candidate genes were selected and genotyped in the F<sub>2 </sub>population. Of the seven SNP, <it>HMGA2 </it>SNP (JF748727: g.2836 A > G) showed the strongest association with ear size in the standard association test and marker-assisted association test. With the F-drop test, F value decreased by more than 97% only when the genotypes of <it>HMGA2 </it>g.2836 A > G were included as a fixed effect. Furthermore, the significant association between g.2836 A > G and ear size was also demonstrated in the synthetic commercial Sutai pig line. The haplotype-based association test showed that the phenotypic variance explained by <it>HMGA2 </it>was similar to that explained by the QTL and at a much higher level than by <it>SOX5</it>. More interestingly, <it>HMGA2 </it>is also located within the dog orthologous chromosome region, which has been shown to be associated with ear type and size.</p> <p>Conclusions</p> <p><it>HMGA2 </it>was the closest gene with a potential functional effect to the QTL or marker for ear size on chromosome 5. This study will contribute to identify the causative gene and mutation underlying this QTL.</p

    Genome-wide QTL mapping for three traits related to teat number in a White Duroc × Erhualian pig resource population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teat number is an important fertility trait for pig production, reflecting the mothering ability of sows. It is also a discrete and often canalized trait presenting bilateral symmetry with minor differences between the two sides, providing a potential power to evaluate fluctuating asymmetry and developmental instability. The knowledge of its genetic control is still limited. In this study, a genome-wide scan was performed with 183 microsatellites covering the pig genome to identify quantitative trait loci (QTL) for three traits related to teat number including the total teat number (TTN), the teat number at the left (LTN) and right (RTN) sides in a large scale White Duroc × Erhualian resource population.</p> <p>Results</p> <p>A sex-average linkage map with a total length of 2350.3 cM and an average marker interval of 12.84 cM was constructed. Eleven genome-wide significant QTL for TTN were detected on 8 autosomes including pig chromosomes (SSC) 1, 3, 4, 5, 6, 7, 8 and 12. Six suggestive QTL for this trait were detected on SSC6, 9, 13, 14 and 16. Eight chromosomal regions each on SSC1, 3, 4, 5, 6, 7, 8 and 12 showed significant associations with LTN. These regions were also evidenced as significant QTL for RTN except for those on SSC6 and SSC8. The most significant QTL for the 3 traits were all located on SSC7. Erhualian alleles at most of the identified QTL had positive additive effects except for three QTL on SSC1 and SSC7, at which White Duroc alleles increased teat numbers. On SSC1, 6, 9, 13 and 16, significant dominance effects were observed on TTN, and predominant imprinting effect on TTN was only detected on SSC12.</p> <p>Conclusion</p> <p>The results not only confirmed the QTL regions from previous experiments, but also identified five new QTL for the total teat number in swine. Minor differences between the QTL regions responsible for LTN and RTN were validated. Further fine mapping should be focused on consistently identified regions with small confidence intervals, such as those on SSC1, SSC7 and SSC12.</p

    Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy

    Get PDF
    Acknowledgments This work was partially supported by grants from the National Key R&D Program of China (2020YFA0908800), NSFC (82111530209, 81773674, 91959103, 81573383, 21763002), Shenzhen Science and Technology Research Grant (JCYJ20190808152019182), the Applied Basic Research Program of Wuhan Municipal Bureau of Science and Technology (2019020701011429), Hubei Province Scientific and Technical Innovation Key Project (2020BAB058), the Local Development Funds of Science and Technology Department of Tibet (XZ202102YD0033C, XZ202001YD0028C), and the Fundamental Research Funds for the Central Universities.Peer reviewedPublisher PD

    Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction: Radiation-Induced Brain Abnormalities

    Get PDF
    Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc
    corecore