13,198 research outputs found

    Differential Chow Form for Projective Differential Variety

    Full text link
    In this paper, a generic intersection theorem in projective differential algebraic geometry is presented. Precisely, the intersection of an irreducible projective differential variety of dimension d>0 and order h with a generic projective differential hyperplane is shown to be an irreducible projective differential variety of dimension d-1 and order h. Based on the generic intersection theorem, the Chow form for an irreducible projective differential variety is defined and most of the properties of the differential Chow form in affine differential case are established for its projective differential counterpart. Finally, we apply the differential Chow form to a result of linear dependence over projective varieties given by Kolchin.Comment: 17 page

    Multiplicity Preserving Triangular Set Decomposition of Two Polynomials

    Full text link
    In this paper, a multiplicity preserving triangular set decomposition algorithm is proposed for a system of two polynomials. The algorithm decomposes the variety defined by the polynomial system into unmixed components represented by triangular sets, which may have negative multiplicities. In the bivariate case, we give a complete algorithm to decompose the system into multiplicity preserving triangular sets with positive multiplicities. We also analyze the complexity of the algorithm in the bivariate case. We implement our algorithm and show the effectiveness of the method with extensive experiments.Comment: 18 page

    Quantum Algorithms for Boolean Equation Solving and Quantum Algebraic Attack on Cryptosystems

    Get PDF
    Decision of whether a Boolean equation system has a solution is an NPC problem and finding a solution is NP hard. In this paper, we present a quantum algorithm to decide whether a Boolean equation system FS has a solution and compute one if FS does have solutions with any given success probability. The runtime complexity of the algorithm is polynomial in the size of FS and the condition number of FS. As a consequence, we give a polynomial-time quantum algorithm for solving Boolean equation systems if their condition numbers are small, say polynomial in the size of FS. We apply our quantum algorithm for solving Boolean equations to the cryptanalysis of several important cryptosystems: the stream cipher Trivum, the block cipher AES, the hash function SHA-3/Keccak, and the multivariate public key cryptosystems, and show that they are secure under quantum algebraic attack only if the condition numbers of the corresponding equation systems are large. This leads to a new criterion for designing cryptosystems that can against the attack of quantum computers: their corresponding equation systems must have large condition numbers
    • …
    corecore