22 research outputs found
ARMC5 Controls the Degradation of Most Pol II Subunits, and ARMC5 Mutation Increases Neural Tube Defect Risks in Mice and Humans
BACKGROUND: Neural tube defects (NTDs) are caused by genetic and environmental factors. ARMC5 is part of a novel ubiquitin ligase specific for POLR2A, the largest subunit of RNA polymerase II (Pol II).
RESULTS: We find that ARMC5 knockout mice have increased incidence of NTDs, such as spina bifida and exencephaly. Surprisingly, the absence of ARMC5 causes the accumulation of not only POLR2A but also most of the other 11 Pol II subunits, indicating that the degradation of the whole Pol II complex is compromised. The enlarged Pol II pool does not lead to generalized Pol II stalling or a generalized decrease in mRNA transcription. In neural progenitor cells, ARMC5 knockout only dysregulates 106 genes, some of which are known to be involved in neural tube development. FOLH1, critical in folate uptake and hence neural tube development, is downregulated in the knockout intestine. We also identify nine deleterious mutations in the ARMC5 gene in 511 patients with myelomeningocele, a severe form of spina bifida. These mutations impair the interaction between ARMC5 and Pol II and reduce Pol II ubiquitination.
CONCLUSIONS: Mutations in ARMC5 increase the risk of NTDs in mice and humans. ARMC5 is part of an E3 controlling the degradation of all 12 subunits of Pol II under physiological conditions. The Pol II pool size might have effects on NTD pathogenesis, and some of the effects might be via the downregulation of FOLH1. Additional mechanistic work is needed to establish the causal effect of the findings on NTD pathogenesis
ARMC5 Controls the Degradation of Most Pol II Subunits, and ARMC5 Mutation Increases Neural Tube Defect Risks in Mice and Humans
BACKGROUND: Neural tube defects (NTDs) are caused by genetic and environmental factors. ARMC5 is part of a novel ubiquitin ligase specific for POLR2A, the largest subunit of RNA polymerase II (Pol II).
RESULTS: We find that ARMC5 knockout mice have increased incidence of NTDs, such as spina bifida and exencephaly. Surprisingly, the absence of ARMC5 causes the accumulation of not only POLR2A but also most of the other 11 Pol II subunits, indicating that the degradation of the whole Pol II complex is compromised. The enlarged Pol II pool does not lead to generalized Pol II stalling or a generalized decrease in mRNA transcription. In neural progenitor cells, ARMC5 knockout only dysregulates 106 genes, some of which are known to be involved in neural tube development. FOLH1, critical in folate uptake and hence neural tube development, is downregulated in the knockout intestine. We also identify nine deleterious mutations in the ARMC5 gene in 511 patients with myelomeningocele, a severe form of spina bifida. These mutations impair the interaction between ARMC5 and Pol II and reduce Pol II ubiquitination.
CONCLUSIONS: Mutations in ARMC5 increase the risk of NTDs in mice and humans. ARMC5 is part of an E3 controlling the degradation of all 12 subunits of Pol II under physiological conditions. The Pol II pool size might have effects on NTD pathogenesis, and some of the effects might be via the downregulation of FOLH1. Additional mechanistic work is needed to establish the causal effect of the findings on NTD pathogenesis
Alliances of networks & networks of alliances; international cooperation in mobile telecommunications
This paper introduces a social network perspective to the study of telecommunication alliances, with a focus on the international roaming agreements as our unit of analysis. Main issues include the influence of various firm and country-specific factors on the formation of inter-carrier relationships and how formalized alliances affect these inter-carrier relationships
Mechanism of attapulgite processed by calcination and grinding on hydration process and mechanical properties of cementitious materials
In this paper, the effects of attapulgite processed by two different methods, burning and grinding attapulgite (BGA) and grinding and burning attapulgite (GBA), on the macroscopic mechanical properties and microscopic hydration mechanism of cement paste were systematically studied. The application potential of these two materials in the field of cement-based materials was analyzed and evaluated. The results indicated that both BGA and GBA inhibited the hydration of cement to varying degrees at 7th day of age. Due to the competitive adsorption of water by the nanorod crystal structure of BGA and GBA, the amount of water used for cement hydration decreased, thus reducing the hydration degree of cement. The decrease of hydration product content increased the porosity and leaded to the decrease of mechanical strength. At the age of 28th days, due to the slow-release effect of the nanorod crystal structure and the pozzolanic effect, the macroscopic mechanical strength of the admixture ratio except for 20 % BGA all exceeded that of control paste. The mass generation of hydration products of the paste formed a dense micro structure and thus reduced the porosity. The structure and morphology of Calcium silicate hydrate (CSH) formed by BGA and GBA were distinctive by SEM-EDS at 28th days, because Ca/Si in CSH decreased to different degrees. In general, the performance of GBA on cement hydration kinetics and macroscopic mechanical strength was better than that of BGA at 7th and 28th day, and 20 % GBA was the optimal ratio of all mixture ratios
Investigating the Respiratory and Energy Metabolism Mechanisms behind ε-Poly-L-lysine Chitosan Coating’s Improved Preservation Effectiveness on <i>Tremella fuciformis</i>
Freshly harvested Tremella fuciformis contains high water content with an unprotected outer surface and exhibits high respiration rates, which renders it prone to moisture and nutrient loss, leading to decay during storage. Our research utilized ε-poly-L-lysine (ε-PL) and chitosan as a composite coating preservative on fresh T. fuciformis. The findings revealed that the ε-PL + chitosan composite coating preservative effectively delayed the development of diseases and reduced weight loss during storage compared to the control group. Furthermore, this treatment significantly decreased the respiration rate of T. fuciformis and the activity of respiratory metabolism-related enzymes, such as alternative oxidase (AOX), cytochrome c oxidase (CCO), succinic dehydrogenase (SDH), 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase (6-PGDH and G-6-PDH). Additionally, the composite coating preservative also delayed the depletion of ATP and ADP and maintained higher levels of the energy charge while preserving low levels of AMP. It also sustained heightened activities of Mg2+-ATPase, Ca2+-ATPase, and H+-ATPase enzymes. These results demonstrate that utilizing the ε-PL + chitosan composite coating preservative can serve as a sufficiently safe and efficient method for prolonging the shelf life of post-harvest fresh T. fuciformis
Low-Molecular-Weight Peptides Prepared from <i>Hypsizygus marmoreus</i> Exhibit Strong Antioxidant and Antibacterial Activities
Hypsizygus marmoreus has abundant proteins and is a potential source for the development of bioactive peptides. However, currently, the research on the bioactive components of H. marmoreus mainly focuses on polysaccharides, and there is no relevant research on the preparation of bioactive peptides. In this article, an ultrasound-assisted extraction method was used to extract proteins from H. marmoreus, and then, four peptides with different molecular weight ranges were prepared through protease hydrolysis and molecular classification. The antioxidant and antibacterial activities were also studied. Under the optimal conditions, the extraction rate of H. marmoreus proteins was 53.6%. Trypsin exhibited the highest hydrolysis rate of H. marmoreus proteins. The optimal parameters for enzymatic hydrolysis were a substrate concentration of 3.7%, enzyme addition of 5700 U/g, pH value of 7, extraction temperature of 55 °C, and time of 3.3 h. Under these conditions, the peptide yield was 59.7%. The four types of H. marmoreus peptides were prepared by molecular weight grading. Among them, peptides with low molecular weight (H. marmoreus peptides and the development of antioxidant and antibacterial peptide products
Association between ABO blood groups and postoperative pain in children after adenotonsillectomy: a prospective cohort study
Abstract Background It has been known that ABO blood groups are linked to the phenotypes of certain diseases; however, and the relationship between ABO blood groups and postoperative pain have not been extensively studied, especially in children. This study was to investigate whether there would be an association between the four major ABO blood groups and postoperative pain, as indicated by the differences in pain scores and rescue fentanyl requirements among blood groups in children after adenotonsillectomy. Methods A total of 124 children, aged 3–7 years, ASA I or II, and undergoing elective adenotonsillectomy were enrolled in the study. Postoperative pain was evaluated using the Children’s Hospital of Eastern Ontario Pain Scale (CHEOPS) and the rescue fentanyl requirement in post anesthesia care unit (PACU) was analyzed. Pediatric Anesthesia Emergence Delirium (PAED) score and the duration of PACU were recorded. The postoperative nausea and vomiting (PONV) within 24 h were documented. Results Among four blood type groups, no significant differences were observed regarding surgery time, and the gaps of fentanyl given at the anesthesia induction and the first rescue fentanyl injection in PACU. However, patients from AB and B blood groups had significantly higher pain score at initial CHEOPS assessment and consequently, higher consumption of rescue fentanyl during PACU stay. A significantly higher percentage of patients had received > 1 μg/kg rescue fentanyl. Higher PAED scores were also observed in AB and B blood groups. Conclusion Paediatric patients with AB and B blood type had higher postoperative CHEOPS pain score and required significantly more fentanyl for pain control than those with A and O blood type after T&A. The initial scores of PAED in patients with AB and B blood type were also higher than that in patients with A and O blood type
Interfacial Reaction Dependent Performance of Hollow Carbon Nanosphere – Sulfur Composite as a Cathode for Li-S Battery
Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of technical challenges, such as low Coulombic efficiency and poor long-term cycle life, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) with highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performances. These findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries