53 research outputs found

    Evaluation of a calibration rig for stereo laparoscopes

    Get PDF
    BACKGROUND: Accurate camera and hand-eye calibration are essential to ensure high quality results in image guided surgery applications. The process must also be able to be undertaken by a non-expert user in a surgical setting. PURPOSE: This work seeks to identify a suitable method for tracked stereo laparoscope calibration within theatre. METHODS: A custom calibration rig, to enable rapid calibration in a surgical setting, was designed. The rig was compared against freehand calibration. Stereo reprojection, stereo reconstruction, tracked stereo reprojection and tracked stereo reconstruction error metrics were used to evaluate calibration quality. RESULTS: Use of the calibration rig reduced mean errors: reprojection (1.47mm [SD 0.13] vs 3.14mm [SD 2.11], p-value 1e-8), reconstruction (1.37px [SD 0.10] vs 10.10px [SD 4.54], p-value 6e-7) and tracked reconstruction (1.38mm [SD 0.10] vs 12.64mm [SD 4.34], p-value 1e-6) compared with freehand calibration. The use of a ChArUco pattern yielded slightly lower reprojection errors, while a dot grid produced lower reconstruction errors and was more robust under strong global illumination. CONCLUSION: The use of the calibration rig results in a statistically significant decrease in calibration error metrics, versus freehand calibration, and represents the preferred approach for use in the operating theatre. This article is protected by copyright. All rights reserved

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Mean-Field Game Control for Large-Scale Swarm Formation Flight in Dense Environments

    No full text
    As an important part of cyberphysical systems (CPSs), multiple aerial drone systems are widely used in various scenarios, and research scenarios are becoming increasingly complex. However, planning strategies for the formation flying of aerial swarms in dense environments typically lack the capability of large-scale breakthrough because the amount of communication and computation required for swarm control grows exponentially with scale. To address this deficiency, we present a mean-field game (MFG) control-based method that ensures collision-free trajectory generation for the formation flight of a large-scale swarm. In this paper, two types of differentiable mean-field terms are proposed to quantify the overall similarity distance between large-scale 3-D formations and the potential energy value of dense 3-D obstacles, respectively. We then formulate these two terms into a mean-field game control framework, which minimizes energy cost, formation similarity error, and collision penalty under the dynamical constraints, so as to achieve spatiotemporal planning for the desired trajectory. The classical task of a distributed large-scale aerial swarm system is simulated by numerical examples, and the feasibility and effectiveness of our method are verified and analyzed. The comparison with baseline methods shows the advanced nature of our method
    • …
    corecore