2 research outputs found

    Bibliometric Analysis of Global Scientific Research on lncRNA: A Swiftly Expanding Trend

    No full text
    To investigate trends in long-noncoding (lnc) RNA research systematically, we compared the contribution of publications among different regions, institutions, and authors. Publications on lncRNA were retrieved from Web of Science (WoS) from 1975 to 2017. A total of 3879 papers were identified, and together they were cited 62967 times. The literature on lncRNA had been continuously growing since 2006, and the expansion might continue at a rapid pace until around 2021. China contributed the greatest proportion (63.47%) of lncRNA publications, and the USA ranked second in the number of publications (944 articles), while it had the highest citation frequency (43168 times) and H-index (97). The journal Oncotarget has the greatest number of publications on lncRNA research, with 305 papers. The keywords could be stratified into two clusters: cluster 1 (application) and cluster 2 (characteristics). Correspondingly, the “TNM stage,” “epithelial mesenchymal transition (EMT),” “cell apoptosis,” and “overall survival” are research hotspots since 2015. Thus, research on lncRNA showed a swiftly expanding trend, with China making the largest contribution. The focus on lncRNA is gradually shifting from “characteristics” to “application.

    Stretchable conductive fibers based on a cracking control strategy for wearable electronics

    No full text
    Stretchability plays an important role in wearable devices. Repeated stretching often causes the conductivity dramatically decreasing due to the damage of the inner conductive layer, which is a fatal and undesirable issue in this field. Herein, a convenient rolling strategy to prepare conductive fibers with high stretchability based on a spiral structure is proposed. With the simple rolling design, low resistance change can be obtained due to confined elongation nof the gold thin-film cracks, which is caused by the encapsulated effect in such a structure. When the fiber is under 50% strain, the resistance change (R/R0) is about 1.5, which is much lower than a thin film at the same strain (R/R0 ≈ 10). The fiber can even afford a high load strain (up to 100%), but still retain good conductivity. Such a design further demonstrates its capability when it is used as a conductor to confirm signal transfer with low attenuation, which can also be woven into textile to fabricate wearable electronics.MOE (Min. of Education, S’pore
    corecore