50 research outputs found
Investigation of piles behavior under lateral cyclic load
In this paper, the capability of 3D nonlinear finite
element models is validated by single pile and 53
pile group filed experiments that is subjected to
cyclic lateral loading. Then, a series 3D finite
elements models are built to analyze the effect of
the number of cycles of lateral loading, pile
spacing, and pile group arrangement. The results
have shown that the number of cycles affected the
pile-soil system stiffness seriously, and the pile
group effect became insignificant as the increase of
pile spacing, while this effect became more
significant with the increase of the pile group
arrangement. In practical engineering, the pile
spacing and pile group arrangement should be
considered and chosen carefully
Lateral Response of Bridge Pile Groups in Liquefiable Soil with Surface Non-Liquefiable Layer Using Shaking Table Test
This paper conducts a shaking table test study on seismic response of low-cap pile groups and bridge structure in liquefiable ground. The soil profile in the test consisted of the horizontal saturated sand layer overlaid the silty clay layer. The base was excited by three different El Centro earthquake events. The preliminary liquefaction characteristics of ground firstly were analyzed. The bending moment of the pile was mainly introduce in the note. There’s no doubt that the shaking table test provided the necessary groundwork to study lateral response of bridge pile groups in liquefiable soil with surface non-liquefiable layer
Permanent Deformation Characteristics of Coarse Grained Subgrade Soils under Train-Induced Repeated Load
This paper presents the results of a laboratory experiment that aimed to characterize the permanent deformation behavior of coarse grained soils. To evaluate the effects of the cyclic stress amplitude, initial mean stress, and initial stress ratio on the permanent axial deformation, six series of repeated load triaxial tests were performed. The results indicate that permanent deformation of coarse grained soils increased with increasing cyclic stress amplitude. In particular, for relative low cyclic stress levels, accumulation rate of permanent deformation decreased progressively with number of cycles and eventually reached an equilibrium state. The initial stress ratio was also found to obviously facilitate the buildup of axial deformation since it means higher deviatoric stress as the mean pressure kept constant. As the initial stress ratio was less than the slope of static failure line, the experimental results indicated that the increase of initial mean stress enhanced the capability of resisting deformation. A simplified mechanistic empirical prediction model was proposed, which predicted the permanent deformation as product of four independent functions about cyclic stress amplitude, initial mean stress, initial stress ratio, and number of load cycles. Satisfactory predictions of the permanent deformation behavior of coarse grained soils were obtained with the proposed model
Field Testing and Analysis of Embankment Vibrations Induced by Heavy Haul Trains
This paper presents a field testing of track and ground-borne vibration generated by heavy haul trains. The test sites consisted of three embankments with height of 6.6, 8.1, and 11.9, respectively. The acceleration signals of the rail, sleeper, and embankment surface were recorded, and then the propagation characteristics of ground vibration with distance to track center were contrastively analyzed. The test results show that horizontal vibration was dominant for locations near the track but decreased rapidly and became comparable with the vertical levels as the distance from track center increases. The quasi-static excitation dominated the sleeper response, and the dominant frequency range was found in the low-frequency zone corresponding to the fundamental axle passage frequency. For embankment surface, another pronounced dominant frequency zone was observed between 30 and 80 Hz, which was attributed to the dynamic excitation. Moreover, these higher frequency components were more promptly attenuated than low-frequency ones. The reason that vibration levels generated by locomotive were greater than wagon was attributed to the different bogie suspension mode. The relationship between normalized PPV and distance from track center in doubly logarithmic scales can be expressed with exponential function, and the vibration attenuation rates were restrained with increasing the embankment height
DEM Investigation of Particle-Scale Mechanical Properties of Frozen Soil Based on the Nonlinear Microcontact Model Incorporating Rolling Resistance
Although frozen soil is in nature the discrete material, it is generally treated as the continuum material. The mechanical properties of frozen soil are so complex to describe adequately by conventional continuum mechanics method. In this study, the nonlinear microcontact model incorporating rolling resistance is proposed to investigate the particle-scale mechanical properties of frozen soil. The failure mechanism of frozen soil is explicated based on the evolution of contact force chains and propagation of microcracks. In addition, the effects of contact stiffness ratio and friction coefficient on stress-strain curve and energy evolution are evaluated. The results show that the nonlinear microcontact model incorporating rolling resistance can better describe the experimental data. At a higher axial strain, the contact force chains near shear band which can give rise to the soil arch effect rotate away from the shear band inclination but not so much as to become perpendicular to it. The propagation of microcracks can be divided into two phases. The stress-strain curve is strongly influenced by contact stiffness ratio. In addition, friction coefficient does not significantly affect the initial tangential modulus. Compared with frictional coefficient, the effect of contact stiffness ratio on stress-strain curve and energy evolution is greater
Discussion on the Feasibility of the Integration of Wind Power and Coal Chemical Industries for Hydrogen Production
To improve the utilization rate of the energy industry and reduce high energy consumption and pollution caused by coal chemical industries in northwestern China, a planning scheme of a wind-coal coupling energy system was developed. This scheme involved the analysis method, evaluation criteria, planning method, and optimization operation check for the integration of a comprehensive evaluation framework. A system was established to plan the total cycle revenue to maximize the net present value of the goal programming model and overcome challenges associated with the development of new forms of energy. Subsequently, the proposed scheme is demonstrated using a 500-MW wind farm. The annual capacity of a coal-to-methanol system is 50,000. Results show that the reliability of the wind farm capacity and the investment subject are the main factors affecting the feasibility of the wind-coal coupled system. Wind power hydrogen production generates O2 and H2, which are used for methanol preparation and electricity production in coal chemical systems, respectively. Considering electricity price constraints and environmental benefits, a methanol production plant can construct its own wind farm, matching its output to facilitate a more economical wind-coal coupled system. Owing to the high investment cost of wind power plants, an incentive mechanism for saving energy and reducing emissions should be provided for the wind-coal coupled system to ensure economic feasibility and promote clean energy transformation
Effects of sliding liquefaction on homogeneous loess landslides in western China
Abstract Sliding liquefaction is considered to be the cause of high-speed and long-distance sliding of some homogeneous loess landslides in western China. However, there is still a lack of necessary experimental research and analysis on the effects of sliding liquefaction on these landslides. In this work, the effects of sliding liquefaction on irrigation-induced, high-speed and long-distance loess landslides on the South Jingyang Tableland area in China are studied by performing large-scale ring shear tests and using the sled mode. The results are as follows. (1) There are two kinds of long-runout sliding modes of loess landslides on the South Jingyang Tableland: sliding along the terrace surface and sliding within the saturated terrace alluvium, which is associated with sliding liquefaction. Both sliding modes can lead to long-runout sliding. (2) There are some differences in the inclination of the sliding surface between the two sliding modes. Based on the inclination of the sliding surface, the corresponding sliding mode can be distinguished. (3) Under the two sliding modes, the large shear mechanical properties of the two-layer soil composed of loess and alluvial sandy silt show significant differences. The friction between the loess and dry terrace alluvium increases with increasing normal stress and shear rate, while the friction between the loess and saturated terrace alluvium presents the opposite trend. The results show that the sliding distances under different sliding modes present opposite trends with the change in sliding speed. (4) Based on the test results from the ring shear tests and the morphological characteristics of the sliding surface, the sliding mode and sliding distance of a loess landslide can be identified and predicted
Structural Stiffness Identification Based on the Extended Kalman Filter Research
For the response acquisition of the structure section measuring points, the method of identifying the structural stiffness parameters is developed by using the extended Kalman filter. The state equation of structural system parameter is a nonlinear equation. Dispersing the structural dynamic equation by using Newmark-β method, the state transition matrix of discrete state equation is deduced and the solution of discrete state equation is simplified. The numerical simulation shows that the error of structural recognition doesnot exceed 5% when the noise level is 3%. It meets the requirements of the error limit of the engineering structure, which indicates that the derivation described in this paper has the robustness for the structural stiffness recognition. Shear structure parameter identification examples illustrate its applicability, and the method can also be used to identify physical parameters of large structure
Attenuation Law of Train-Induced Vibration Response of Subgrade in Beijing–Harbin Railway
To investigate environmental vibration in the case of railway subgrade in seasonally frozen regions, field experiments were conducted on the Beijing–Harbin railway subgrade of China in autumn and winter. Vibration acceleration and vibration level attenuation law were analysed based on monitoring results. Accordingly, the influence of the subgrade freeze-thaw states, vehicle load, train formation, and running speed on the subgrade surface environmental vibration was analysed. The vibration response of the subgrade decreased with an increase in the distance from the track. The attenuation curve of the vibration acceleration can be fitted using the negative exponential function, and the attenuation curve of the vibration level can be fitted using the linear function. Additionally, the subgrade vibration response during the frozen period was greater than that during the unfrozen period owing to increased strength and rigidity and decreased damping ratio after subgrade freezing, which increased the vibration response. Moreover, the vibration intensity of the subgrade increased with increase in the vehicle load and formation and decreased with an increase in the driving speed within a particular speed range. The findings of this study provide an objective basis for railway subgrade design and disaster assessment in cold regions of China
Frost heave performance of a foundation at an overhead transmission line in the alpine seasonal frozen regions
The Manzhouli 500 kV electrical transmission line travels more than 218 km through seasonal frozen regions, which result in many freezing soil engineering problems with respect to the transmission tower foundations. Physical model tests of independent reinforced concrete foundations at various temperatures were conducted and verified by numerical simulation to investigate the frost-heaving characteristics of the reinforced concrete foundation in an alpine seasonally frozen region. The evolution of the temperature field, frost-heaving force, and water migration of frozen soil were studied in an open water refill environment with a dead load. The heave force in the foundation soil increases as temperature decreases. The horizontal heave force in the middle and upper parts of the foundation can reach 540 kPa. However, the maximum tangential frost-heaving force becomes 3.83 kN, and the maximum frozen depth of the frozen soil was 240 mm. During the freezing process, the frost heave of the foundation was significantly more noticeable. The correlation between experimental and simulated values is good, and each parameter’s variation error is less than 5 %. Finally, control measures of frost heave were proposed to guide engineering practice based on experimental and numerical studies