13 research outputs found

    Performance, Reaction Pathway and Kinetics of the Enhanced Dechlorination Degradation of 2,4-Dichlorophenol by Fe/Ni Nanoparticles Supported on Attapulgite Disaggregated by a Ball Milling–Freezing Process

    No full text
    Attapulgite (ATP) disaggregated by a ball milling–freezing process was used to support Fe/Ni bimetallic nanoparticles (nFe/Ni) to obtain a composite material of D-ATP-nFe/Ni for the dechlorination degradation of 2,4-dichlorophenol (2,4-DCP), thus improving the problem of agglomeration and oxidation passivation of nanoscale zero-valent iron (nFe) in the dechlorination degradation of chlorinated organic compounds. The results show that Fe/Ni nanoparticle clusters were dispersed into single spherical particles by the ball milling–freezing-disaggregated attapulgite, in which the average particle size decreased from 423.94 nm to 54.51 nm, and the specific surface area of D-ATP-nFe /Ni (97.10 m2/g) was 6.9 times greater than that of nFe/Ni (14.15 m2/g). Therefore, the degradation rate of 2,4-DCP increased from 81.9% during ATP-nFe/Ni application to 96.8% during D-ATP-nFe/Ni application within 120 min, and the yield of phenol increased from 57.2% to 86.1%. Meanwhile, the reaction rate Kobs of the degradation of 2,4-DCP by D-ATP-nFe/Ni was 0.0277 min−1, which was higher than that of ATP-nFe/Ni (0.0135 min−1). In the dechlorination process of 2,4-DCP by D-ATP-nFe/Ni, the reaction rate for the direct dechlorination of 2,4-DCP of phenol (k5 = 0.0156 min−1) was much higher than that of 4-chlorophenol (4-CP, k2 = 0.0052 min−1) and 2-chlorophenol (2-CP, k1 = 0.0070 min−1), which suggests that the main dechlorination degradation pathway for the removal of 2,4-DCP by D-ATP-nFe/Ni was directly reduced to phenol by the removal of two chlorine atoms. In the secondary pathway, the removal of one chlorine atom from 2,4-DCP to generate 2-CP or 4-CP as intermediate was the rate controlling step. The final dechlorination product (phenol) was obtained when the dechlorination rate accelerated with the progress of the reaction. This study contributes to the broad topic of organic pollutant treatment by the application of clay minerals

    Enhanced Photodegradation of p-Nitrobenzoic Acid by Binary Mixtures with Ba2+/TiO2 and MCM-41

    No full text
    A novel Ba(II)/TiO2–MCM-41 composite was synthesized using binary mixtures with Ba2+/TiO2 and MCM-41, and Ba2+ as a doping ion of TiO2. The specific surface area and pore structure characterizations confirm that a mesoporous structure with a surface area of 341.2 m2/g and a narrow pore size distribution ranging from 2 to 4 nm was achieved using Ba(II)/TiO2–MCM-41. Ba(II)/TiO2 particles were synthesized into 10–15 nm particles and were well dispersed onto MCM-41. The diffraction peaks in the XRD patterns of TiO2–MCM-41 and Ba(II)/TiO2–MCM-41 were all attributed to anatase TiO2. By taking advantage of MCM-41 and Ba2+, the photocatalytic performance of Ba(II)/TiO2–MCM-41 was remarkably enhanced by suppressing its rutile phase, by lowering the band gap energy, and by facilitating the dispersion of TiO2. Therefore, the photodegradation efficiencies of p-nitrobenzoic acid (4 × 10−4 mol/L) by various photocatalysts (60 min) under UV light irradiation are arranged in the following order: Ba(II)/TiO2–MCM-41 (91.7%) > P25 (86.3%) > TiO2–MCM-41 (80.6%) > Ba(II)/TiO2 (55.7%) > TiO2 (53.9%). The Ba(II)/TiO2–MCM-41 composite was reused for five cycles and maintained a high catalytic activity (73%)

    Coupling Removal of P-Chloronitrobenzene and Its Reduction Products by Nano Iron Doped with Ni and FeOOH (nFe/Ni-FeOOH)

    No full text
    The removal of chlorinated pollutants from water by nanoparticles is a hot topic in the field of environmental engineering. In this work, a novel technique that includes the coupling effect of n-Fe/Ni and its transformation products (FeOOH) on the removal of p-chloronitrobenzene (p-CNB) and its reduction products, p-chloroaniline (p-CAN) and aniline (AN), were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the nano-iron before and after the reaction. The results show that Fe0 is mainly oxidized into lath-like lepidocrocite (γ-FeOOH) and needle-like goethite (α-FeOOH) after 8 h of reaction. The coupling removal process and the mechanism are as follows: Fe0 provides electrons to reduce p-CNB to p-CAN and then dechlorinates p-CAN to AN under the catalysis of Ni. Meanwhile, Fe0 is oxidized to FeOOH by the dissolved oxygen and H2O. AN is then adsorbed by FeOOH. Finally, p-CNB, p-CAN, and AN were completely removed from the water. In the pH range between 3 and 7, p-CAN can be completely dechlorinated by n-Fe/Ni within 20 min, while AN can be nearly 100% adsorbed by FeOOH within 36 h. When the temperature ranges from 15 °C to 35 °C, the dechlorination rate of p-CAN and the removal rate of AN are less affected by temperature. This study provides guidance on the thorough remediation of water bodies polluted by chlorinated organics

    Experimental Identification of the Roles of Fe, Ni and Attapulgite in Nitroreduction and Dechlorination of p-Chloronitrobenzene by Attapulgite-Supported Fe/Ni Nanoparticles

    No full text
    The porous-material loading and noble-metal doping of nanoscale zero-valent iron (nFe) have been widely used as countermeasures to overcome its limitations. However, few studies focused on the experimental identification of the roles of Fe, the carrier and the doped metal in the application of nFe. In this study, the nitroreduction and dechlorination of p-chloronitrobenzene (p-CNB) by attapulgite-supported Fe/Ni nanoparticles (ATP-nFe/Ni) were investigated and the roles of Fe, Ni and attapulgite were examined. The contributions of Ni are alleviating the oxidization of Fe, acting as a catalyst to trigger the conversion of H2 to H*(active hydrogen atom) and promoting electron transfer of Fe. The action mechanisms of Fe in reduction of -NO2 to -NH2 were confirmed to be electron transfer and to produce H2 via corrosion. When H2 is catalyzed to H* by Ni, the production H* leads to the nitroreduction. In additon, H* is also responsible for the dechlorination of p-CNB and its nitro-reduced product, p-chloroaniline. Another corrosion product of Fe, Fe2+, is incapable of acting in the nitroreduction and dechlorination of p-CNB. The roles of attapulgite includes providing an anoxic environment for nFe, decreasing nFe agglomeration and increasing reaction sites. The results indicate that the roles of Fe, Ni and attapulgite in nitroreduction and dechlorination of p-CNB by ATP-nFe/Ni are crucial to the application of iron-based technology

    Blind Spots Analysis of Magnetic Tensor Localization Method

    No full text
    In order to compare and analyze the positioning efficiency of the magnetic tensor location method, this paper studies the blind spots of the magnetic tensor location method. By constructing two magnetic tensor localization models, the localization principles of the single-point magnetic tensor localization method (STLM) and the two-point magnetic tensor linear localization method (TTLM) are analyzed. Furthermore, the eigenvalue analysis method is studied to analyze the blind spots of STLM, and the spherical analysis method is proposed to analyze the blind spots of TTLM. The results show that when the direction of any measuring point is perpendicular to the direction of the target magnetic moment, blind spots of STLM appear. However, TTLM still has good positioning performance in the blind spot

    Petrogenesis and metallogenic significance of multistage granites in Shimensi tungsten polymetallic deposit, Dahutang giant ore field, South China

    No full text
    The Shimensi tungsten polymetallic deposit, situated in the Dahutang ore field, South China, is one of the largest tungsten deposits in the world, with an estimated WO3 reserve of 0.74 million tons. Coarse-grained porphyritic biotite granite (CPBG), fine-grained porphyritic biotite granite (FPBG), fine-grained biotite granite (FBG) and biotite granite porphyry (BGP) are all ore-related, but their diagenetic relationships and contributions to W-Cu-Mo mineralization are still in dispute. LA-ICP-MS monazite U-Pb dating of the CPBG, FPBG, FBG and BGP yield emplacement ages of 147.9 ± 1.1 Ma, 146.4 ± 1.1 Ma, 138.6 ± 0.98 Ma and 142.8 ± 1.7 Ma, respectively. Whole-rock geochemical results indicate that the four granites should be classified as S-type granites, but BGP has distinct features transitional between S- and I-type granites. They were possibly generated by partial melting of upper crustal pelites and basic volcanic rocks with different proportion from the Neoproterozoic Shuangqiaoshan Group in the source. Proportional variation in the magmatic source (clay and basic basalts) induces the change of geochemical compositions of the Shimensi granites. Geochemical characteristics suggest that they were derived from two magma chambers (the CPBG, FPBG and FBG vs. the BGP) and experienced different evolutionary processes and different degree of magmatic differentiation during magmatic evolution. Chondrite-normalized REE patterns for the four granites display low total REE contents, variable and strongly enriched LREE relative to HREE and medium-strong negative Eu anomalies. They are enriched in Rb, Th, U, Ta and depleted in Ba, Nb, Sr, P, Ti. Biotites are iron-rich and aluminum-poor, and can be classified as ferro-biotite (CPBG, FPBG and FBG) and siderophyllite (BGP). The partial melting of tungsten-rich metasediments of the Shuangqiaoshan Group and high degree of fractional crystallization led to enrichment in tungsten in the magma suites. Oxygen fugacities of the CPBG and FPBG declined from early (most above the NNO buffers) to late stages of fractional crystallization (between the NNO and QFM buffers) because of the higher degree of magmatic differentiation in the late stages. In the early stages of fractionation, tungsten accumulated in the residual melts rather than partitioning into accessory minerals. In the late stages, lower oxygen fugacities and high fluorine contents promoted the removal of tungsten from the residual magma into reduced hydrothermal fluids. On the other hand, the FBG and BGP remained constant (above the NNO buffers) over the entire process of crystallization owning to the stable degree of magmatic differentiation, promoting retention of tungsten in the melt and resulting in low grade tungsten mineralization. Tungsten mineralization in the Shimensi deposit is greatly controlled by the redox states of the associated magma. The two porphyritic granites (the CPBG and FPBG) are most likely the main contributors of tungsten, while the FBG and BGP are mainly responsible for copper and molybdenum in the Shimensi deposit. Prolonged multiphase magmatism and prolonged W-Cu-Mo mineralization play important roles in the formation of Shimensi large tungsten polymetallic deposit.This research was financially supported by the China Geological Survey Project (No. DD20160123), the National Natural Science Foundation of China (No. 41503050), the Basic scientific research fund of the Institute of Geology, Chinese Academy of Geological Sciences with grant No. J1630 and the National Key Research and Development plan Project (No. 2016YFC0600203)

    The growth mechanism of titania/hydroxyapatite and its application in the photodegradation of methyl orange dye under UV irradiation

    No full text
    In this work, titania/hydroxyapatite (TiO2/HAP) composite materials were synthesized via a wet chemistry method. Morphological field emission scanning electron microscopy and electronic differential system field analysis revealed the growth mechanism that TiO2 began to divorce from surface on HAP with the Ti content of 2.60% while separated from the surface of HAP with the Ti content of 4.83%. Furthermore, Fourier transform infrared spectroscopy verified that the crystal structure of TiO2/HAP remained stable in the degradation process of MO. Especially, the TiO2/HAP has a good photocatalytic activity and photostability with the Ti content of 2.55%. Keywords: Titania/hydroxyapatite, Growth mechanism, Structural, Photocatalytic activit

    Ionospheric Cycle Slip Processing in Triple-frequency GNSS

    No full text
    A new method based on three linear independence geometry-free and ionosphere-free (GIF) combinations to detect and repair cycle-slip is advanced to finishing the cycle slip processing under the higher ionospheric activity. In order to ensure that the cycle slip correction is accurate, the repair value is validated by a second-order, time-difference phase ionospheric residual (STPIR) combination. And then, this method is validated and analyzed by using the triple-frequency data with higher ionospheric error. The experiment results show that this method can nearly detect and repair all the cycle slip except several insensitive cycle slip under high ionospheric activity. So this method can be used to cycle slip procession in triple-frequency precise point position and other un-differenced dynamic navigation and position

    Magmatic processes recorded in plagioclase and the geodynamic implications in the giant Shimensi W–Cu–Mo deposit, Dahutang ore field, South China

    No full text
    The Shimensi W–Cu–Mo deposit is one of the largest tungsten deposits in the world. Despite numerous geochemical studies conducted on ore-related granites in the district, few studies have concerned magma chambers processes. In this study, systematic in-situ major- and trace-element studies across plagioclase crystals from the ore-related Mesozoic granites as well as whole-rock Sr–Nd isotopic compositions of such granites in the Shimensi deposit were used to constrain the sources of calcium, the dynamics of the magmatic system and the metallogenic geodynamic setting. In-situ analyses of plagioclase showed no obvious positive correlations between An and FeO, while Sr was positively correlated with Ba, indicating that the magma chambers in the Shimensi deposit may have experienced chemically-closed evolution affected only by thermal mixing and/or decompression, without chemical mixing with mafic magma from the mantle. This conclusion was also supported by whole-rock Sr–Nd isotopic characteristics of high (87Sr/86Sr)i (0.71664–0.73689) and negative εNd(t) values (−9.81 to −5.07). It was found that the calcium needed for scheelite mineralization may have been predominantly provided by biotite granodiorite (BG) because of its high calcium content and large size, while ore-forming metals should mainly have been derived from the magma sources of pelites and basic volcanic rocks in the Shuangqiaoshan Group instead of the recharging of mafic magma. Moreover, change of the stress environment likely facilitated the formation of long-term stable, large-volume, highly evolved felsic magma chambers in the shallow crust, which would have been critical to the formation of the giant Shimensi W–Cu–Mo deposit.This research was financially supported by the National Key Research and Development Plan Project of China (No. 2016YFC0600203), the National Natural Science Foundation of China (No. 42002101, 41873059, 92062104, 41503050), the Basic Scientific Research Foundation of the Institute of Geology, CAGS (No. J1630) and the China Geological Survey Project (No. DD20190001)
    corecore