5 research outputs found

    Study on Formulation, in vivo Exposure, and Passive Targeting of Intravenous Itraconazole Nanosuspensions

    Get PDF
    The pharmacokinetic profile of a drug can be different when delivered as a nanosuspension compared with a true solution, which may in turn affect the therapeutic effect of the drug. The goal of this study was to prepare itraconazole nanosuspensions (ITZ-Nanos) stabilized by an amphipathic polymer, polyethylene glycol-poly (benzyl aspartic acid ester) (PEG-PBLA), by the precipitation-homogenization, and study the pharmacokinetic profile of the ITZ-Nanos. The particle size and morphology of nanosuspensions were determined by Zetasizer and field emission scanning electron microscope (SEM), respectively. The dissolution profile was evaluated using a paddle method according to Chinese Pharmacopoeia 2015. The level of ITZ in plasma and tissues was measured by a HPLC method. The optimized ITZ-Nanos had an average particle size of 268.1 ± 6.5 nm and the particles were in a rectangular form. The dissolution profile of ITZ-Nanos was similar to that of commercial ITZ injections, with nearly 90% ITZ released in the first 5 min. The ITZ-Nanos displayed different pharmacokinetic properties compared with the commercial ITZ injections, including a decreased initial drug concentration, increased plasma half-life and mean residence time (MRT), and increased concentration in the liver, lung, and spleen. The ITZ-Nanos can change the in vivo distribution of ITZ and result in passive targeting to the organs with mononuclear phagocyte systems (MPS)

    Intelligent Soft Robotic Grippers for Agricultural and Food Product Handling: A Brief Review with a Focus on Design and Control

    No full text
    Advances in material sciences, control algorithms, and manufacturing techniques have facilitated rapid progress in soft grippers, propelling their adoption in various fields. In this review article, a comprehensive overview of the design and control aspects of intelligent soft robotic grippers tailored specifically for agricultural product handling is provided. Soft grippers have emerged as a promising solution for handling delicate and fragile objects. In this article, the recent progress in various gripper design, including fluidic and mechanical grippers, is elucidated and the role of advanced control approaches in enabling intelligent functions, such as object classification and grasping condition evaluation, is explored. Moreover, the challenges and opportunities pertaining to implementation of soft grippers in the agricultural industry are thoroughly discussed. While most demonstrations of soft grippers and their control strategies remain at the experimental stage, in this article, it is aimed to provide insights into the potential applications of soft grippers in agricultural product handling, thereby inspiring future research in this field
    corecore