13 research outputs found

    AKC-Based Revocable ABE Schemes from LWE Assumption

    No full text
    The emergence of quantum computing threatens many classical cryptographic schemes, leading to the innovations in public-key cryptography for postquantum cryptography primitives and protocols that resist to quantum attacks. Lattice-based cryptography is considered to be one of the promising mathematical approaches to achieving security resistant to quantum attacks, which could be built on the learning with errors (LWE) problem and its variants. The fundamental building blocks of protocols for public-key encryption (PKE) and key encapsulation mechanism (KEM) submitted to the National Institute of Standards and Technology (NIST) based on LWE and its variants are called key consensus (KC) and asymmetric key consensus (AKC) by Jin et al. They are powerful tools for constructing PKE schemes. In this work, we further demonstrate the power of KC/AKC by proposing two special types of PKE schemes, namely, revocable attribute-based encryption (RABE). To be specific, on the basis of AKC and PKE/KEM protocols submitted to the NIST based on LWE and its variants, combined with full-rank difference, trapdoor on lattices, sampling algorithms, leftover hash lemma, and binary tree structure, we propose two directly revocable ciphertext-policy attribute-based encryption (DR-ABE) schemes from LWE, which support flexible threshold access policies on multivalued attributes, achieving user-level and attribute-level user revocation, respectively. Specifically, the construction of the ciphertext is derived from AKC, and the revocation list is defined and embedded into the ciphertext by the message sender to revoke a user in the user-level revocable scheme or revoke some attributes of a certain user in the attribute-level revocable scheme. We also discuss how to outsource decryption and reduce the workload for the end user. Our schemes proved to be secure in the standard model, assuming the hardness of the LWE problem. The two schemes imply the versatility of KC/AKC

    Cryptanalysis of two knapsack public-key cryptosystems

    Get PDF
    In this paper, we cryptanalyze two knapsack cryptosystems. The first one is proposed by Hwang et al [4], which is based on a new permutation algorithm named Permutation Combination Algorithm. We show that this permutation algorithm is useless to the security of the cryptosystem. Because of the special super increasing structure, we can break this cryptosystem use the method provided by Shamir at Crypto\u2782. The second one is provided by Su et al [16], which is based on the elliptic curve discrete logarithm and knapsack problem. We show that one can recover the plaintext as long as he solve a knapsack problem.Unfounately, this knapsack problem can be solved by Shamir\u27s method or the low density attack. Finally, we give a improved version of Su\u27s cryptosystem to avoid these attacks

    Advanced Hydrologic Modeling in Watershed Scale

    No full text
    Hydrologic modeling in the watershed scale is a key topic in the field of hydrology [...

    Linear Equations with Small Prime and Almost Prime Solutions

    No full text

    Bounding the sum of square roots via lattice reduction

    No full text

    Indoor High-Precision 3D Positioning System Based on Visible-Light Communication Using Improved Whale Optimization Algorithm

    No full text
    Visible-light communication (VLC) is a promising method for indoor positioning. The received signal strength algorithm is the most widely used localization algorithm in visible-light positioning (VLP) systems. However, in a VLP system, the photodiode (PD) will have a small rotation angle during movement, which will result in a massive positioning error ignoring the angle. In this study, a three-dimensional (3D) indoor VLP system using an improved whale optimization algorithm (IWOA) is proposed to reduce the error caused by the PD rotation. Firstly, the model of the VLC system with the PD rotation angles is introduced. Secondly, a novel IWOA with an elite opposition-based learning strategy and Lévy flight strategy is proposed. The convergence speed and accuracy of the WOA are improved. Lastly, the IWOA algorithm is efficiently utilized to address the problem with the PD rotation in the indoor VLP system. Simulation results show that the average error of 3D positioning is 2.14 cm with no PD rotation. When the PD has a rotation angle, the average positioning error estimated by ignoring the rotation angle is 27.14 cm, while that estimated by considering the rotation angle is 7.85 cm. In the VLP system, the positioning error with the PD rotation angle is effectively reduced by the proposed algorithm, which can be applied in a variety of indoor location scenes

    Indoor High-Precision 3D Positioning System Based on Visible-Light Communication Using Improved Whale Optimization Algorithm

    No full text
    Visible-light communication (VLC) is a promising method for indoor positioning. The received signal strength algorithm is the most widely used localization algorithm in visible-light positioning (VLP) systems. However, in a VLP system, the photodiode (PD) will have a small rotation angle during movement, which will result in a massive positioning error ignoring the angle. In this study, a three-dimensional (3D) indoor VLP system using an improved whale optimization algorithm (IWOA) is proposed to reduce the error caused by the PD rotation. Firstly, the model of the VLC system with the PD rotation angles is introduced. Secondly, a novel IWOA with an elite opposition-based learning strategy and Lévy flight strategy is proposed. The convergence speed and accuracy of the WOA are improved. Lastly, the IWOA algorithm is efficiently utilized to address the problem with the PD rotation in the indoor VLP system. Simulation results show that the average error of 3D positioning is 2.14 cm with no PD rotation. When the PD has a rotation angle, the average positioning error estimated by ignoring the rotation angle is 27.14 cm, while that estimated by considering the rotation angle is 7.85 cm. In the VLP system, the positioning error with the PD rotation angle is effectively reduced by the proposed algorithm, which can be applied in a variety of indoor location scenes
    corecore