3 research outputs found

    Reliability analysis of slope with dominant seepage interlayer under rainfall infiltration

    No full text
    Slopes with dominant seepage interlayers (DSI)often have relatively high uncertainty in their seepage field under the action of rainfall infiltration, which brings difficulties to the stability evaluation.In this regard, probabilistic methods are usually used to analyze the stability of such slopes.For analyzing the reliability of slopes with DSI under rainfall infiltration, the point estimation-finite element method used in the stress analysis was introduced to the slope seepage-stability analysis, and a method for seepage probability and reliability analysis of slopes was developed considering the uncertainty of permeability of DSI.Then, by taking a soil slope with gravel interlayer acting as DSI in Guangxi Province as the engineering case, the seepage probability of DSI under rainfall infiltration was analyzed, and then the slope reliability analysis was conducted based on the seepage probability.Results show that:① In the slope with DSI, the depth of rainwater infiltration along DSI is significantly higher than that along the slope surface; the uncertainty of the permeability of DSI has a great impact on the seepage field, which results in the strong uncertainty of slope stability; ② With the rainwater infiltration in the slope with DSI, the failure probability of different potential slip surfaces generally increases, and the position of the most dangerous slip surface evolves from the upper part to the lower part of the slope. The prediction of the position of slip surface is consistent with the practice; ③The proposed probability analysis method, with the advantages of small calculation amount, is suitable and can be used as a new method for analyzing the stability of slopes with DSI under the influence of rainfall infiltration

    Curcumin nanoparticles incorporated in PVA/collagen composite films promote wound healing

    No full text
    Skin repair remains a common problem in plastic surgery. Wound dressing plays an important role in promoting local skin healing and has been widely studied. This study aimed to manufacture a composite film (CPCF) containing curcumin nanoparticles, collagen, and polyvinyl alcohol (PVA) to effectively promote the healing of skin wounds. Sustained drug release from the composite film provides long-term protection and treatment for skin wounds. Both antibacterial property and good histocompatibility of the CPCF were examined by analyzing antibacterial activity and cytotoxicity to validate its applicability for wound management. Moreover, in vivo studies proved that the CPCF had a rapid healing rate of 98.03%±0.79% and mature epithelialization on day 15 after surgery. Obvious hair follicles and earlier re-epithelialization was also noticed in the CPCF group using H&E staining. The result of Masson’s trichrome staining confirmed that CPCF could promote the formation of collagen fibers. In summary, CPCF may be promising as a wound dressing agent in wound management owing to its rapid wound-healing effects
    corecore