29 research outputs found

    Case report: Pathological complete response induced by immunochemotherapy in a case of Pulmonary Sarcomatoid Carcinoma staged IIIA-N2

    Get PDF
    Pulmonary sarcomatoid carcinoma (PSC) represents a rare and highly aggressive variant of lung cancer, characterized by its recalcitrance to conventional therapeutic modalities and the attendant dismal prognosis it confers. Recent breakthroughs in immunotherapy have presented novel prospects for PSC patients; nevertheless, the utility of neoadjuvant/conversional immunotherapy in the context of PSC remains ambiguous. In this report, we present a middle-aged male presenting with Stage III PSC, notable for its high expression of the programmed death-ligand 1 (PD-L1), initially deemed as non-resectable for sizeable tumor mass and multiple lymph nodes metastases. The patient underwent a transformation to a resectable state after a regimen of three cycles of platinum-based chemotherapy plus immunotherapy. Following definitive surgical resection, the individual realized a pathological complete response (pCR), culminating in a significant prolongation of event-free survival (EFS). This case underscores the viability of employing immunochemotherapy as a neoadjuvant/conversional strategy for chosen cases of PSC

    Tumor regression rate, PD-L1 expression, pembrolizumab/nab-paclitaxel–based regimens, squamous cell carcinoma, and comorbidities were independently associated with efficacy of neoadjuvant chemoimmunotherapy in non-small cell lung cancer

    Get PDF
    BackgroundNeoadjuvant chemoimmunotherapy (NCIO) is more effective than neoadjuvant immunotherapy alone for pathological response in non-small cell lung cancer (NSCLC) patients, but the processes for determining patient suitability for its implementation are not clear. We aimed to identify the most relevant factors and build a convenient model to select NSCLC patients who would benefit most from NCIO.Methods We retrospectively collected the clinical data of patients with locally advanced NSCLC who received NCIO followed by surgery at our institution between January 2019 and July 2022.ResultsA total of 101 eligible stage IIB-IIIC NSCLC patients were included. After NCIO, all patients successfully underwent surgical resection. A total of 46.53% (47/101) of patients achieved pathological complete response (pCR), and 70.30% (71/101) achieved major pathologic response (MPR). Tumor regression rate (adjusted odds ratio OR = 12.33), PD-L1 expression (adjusted odds ratio (OR) = 9.66), pembrolizumab/nab-paclitaxel–based regimens (adjusted OR = 4.92), and comorbidities (adjusted OR = 0.16) were independently associated with pCR rate (all P < 0.05). Tumor regression rate (adjusted OR = 8.45), PD-L1 expression (adjusted OR = 5.35), and presence of squamous cell carcinoma (adjusted OR = 7.02) were independently associated with MPR rate (all P < 0.05). We established and validated an easy-to-use clinical model to predict pCR (with an area under the curve [AUC] of 0.848) and MPR (with an AUC of 0.847). Of note, the present study showed that CD4+ T-cell count/rate and total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) levels in the peripheral blood of pre-NCIO patients were also significantly correlated with pathological response in univariate analyses.ConclusionsThe tumor regression rate, PD-L1 expression, pembrolizumab/nab-paclitaxel–based regimens, presence of squamous cell carcinoma, and comorbidities were the main influential factors for incidence of pCR/MPR in patients with stage IIB-IIIC NSCLC in the present study. Through predictive models, we can predict who will benefit most from NCIO prior to the emergence of clinical outcomes in locally advanced NSCLC

    Research progress of iron metabolism in retinal diseases

    No full text
    Background: Retinal diseases can lead to severe visual impairment and even blindness, but current treatments are limited. For precise targeted therapy, the pathophysiological mechanisms of the diseases still need to be further explored. Iron serves an essential role in many biological activities and helps maintain the function and morphology of the retina. The vision problems caused by retinal diseases are affecting more and more people, the study of iron metabolism in retinal diseases possesses great potential for clinical application. Main text: Iron maintains a dynamic balance in the retina but in excess is toxic to the retina. Iron overload can lead to various pathological changes in the retina through oxidative stress, inflammation, cell death, angiogenesis and other pathways. It is therefore involved in the progression of retinal diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and hereditary iron overload. In recent years, iron chelators have been shown to be effective in the treatment of retinal diseases, but the exact mechanism is not yet fully understood. This question prompted further investigation into the specific mechanisms by which iron metabolism is involved in retinal disease. Conclusions: This review summarizes iron metabolism processes in the retina and mechanistic studies of iron metabolism in the progression of retinal disease. It also highlights the therapeutic potential of iron chelators in retinal diseases

    Core-Shell MnO2-SiO2 Nanorods for Catalyzing the Removal of Dyes from Water

    No full text
    This work presented a novel core-shell MnO2@m-SiO2 for catalyzing the removal of dyes from wastewater. MnO2 nanorods were sequentially coated with polydopamine (PDA) and polyethyleneimine (PEI) forming MnO2@PDA-PEI. By taking advantage of the positively charged amine groups, MnO2@PDA-PEI was further silicificated, forming MnO2@PDA-PEI-SiO2. After calcination, the composite MnO2@m-SiO2 was finally obtained. MnO2 nanorod is the core and mesoporous SiO2 (m-SiO2) is the shell. MnO2@m-SiO2 has been used to degrade a model dye Rhodamine B (RhB). The shell m-SiO2 functioned to adsorb/enrich and transfer RhB, and the core MnO2 nanorods oxidized RhB. Thus, MnO2@m-SiO2 combines multiple functions together. Experimental results demonstrated that MnO2@m-SiO2 exhibited a much higher efficiency for degradation of RhB than MnO2. The RhB decoloration and degradation efficiencies were 98.7% and 84.9%, respectively. Consecutive use of MnO2@m-SiO2 has demonstrated that MnO2@m-SiO2 can be used to catalyze multiple cycles of RhB degradation. After six cycles of reuse of MnO2@m-SiO2, the RhB decoloration and degradation efficiencies were 98.2% and 71.1%, respectively
    corecore