44 research outputs found

    Numerical Simulation of Microemulsion Flooding in Low-Permeability Reservoir

    No full text
    Based on the features of microemulsion flooding in low-permeability reservoir, a three-dimension three-phase five-component mathematical model for microemulsion flooding is established in which the diffusion and adsorption characteristics of surfactant molecules are considered. The non-Darcy flow equation is used to describe the microemulsion flooding seepage law in which the changes of threshold pressure gradient can be taken into account, and the correlation coefficients in the non-Darcy flow equation are determined through the laboratory experiments. A new treatment for the changes of threshold pressure and the quantitative description of adsorption quantity of surfactant and relative permeability curves are presented, which enhance the coincidence between mathematical model and experiment results. The relative errors of main development indexes are within 4%. A software is programmed based on the model to execute a core-level small-scale numerical simulation in Chaoyanggou Oilfield. The fitting relative errors of the pressure, flow rate, and moisture content are 3.25%, 2.71%, and 2.54%, respectively. The results of laboratory experiments and numerical simulation showed that microemulsion system could reduce the threshold pressure gradient by 0.010 MPa/m and injection pressure by 0.6 MPa. The biggest decline in moisture content reaches 33%, and the oil recovery is enhanced by 10.8%

    Heterologous expression, purification and biochemical characterization of a glutamate racemase (MurI) from Streptococcus mutans UA159

    No full text
    Background Glutamate racemase (MurI) is a cofactor-independent enzyme that is essential to the bacterial peptidoglycan biosynthesis pathway and has therefore been considered an attractive target for the development of antimicrobial drugs. While in our previous study the essentiality of the murI gene was shown in Streptococcus mutans, the primary aetiologic agent of human dental caries, studies on S. mutans MurI have not yet provided definitive results. This study aimed to produce and characterize the biochemical properties of the MurI from the S. mutans UA159 genome. Methods Structure characterization prediction and multiple sequence alignment were performed by bioinformatic analysis. Recombinant His6-tagged S. mutans MurI was overexpressed in the expression vector pColdII and further purified using a Ni2+ affinity chromatography method. Protein solubility, purity and aggregation state were analyzed by SDS–PAGE, Western blotting, native PAGE and SEC-HPLC. Kinetic parameters were assessed by a circular dichroism (CD) assay. Kinetic constants were calculated based on the curve fit for the Michaelis–Menten equation. The effects of temperature and pH on enzymatic activity were determined by a series of coupled enzyme reaction mixtures. Results The glutamate racemase gene from S. mutans UA159 was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3). The 264-amino-acid protein, as a mixture of dimeric and monomeric enzymes, was purified to electrophoretic homogeneity. In the CD assay, S. mutans MurI displayed unique kinetic parameters (Km, d-Glu→l-Glu = 0.3631 ± 0.3205 mM, Vmax, d-Glu→l-Glu = 0.1963 ± 0.0361 mM min−1, kcat, d-Glu→l-Glu = 0.0306 ± 0.0065 s−1, kcat/Km, d-Glu→l-Glu = 0.0844 ± 0.0128 s−1 mM−1, with d-glutamate as substrate; Km, l-Glu→d-Glu = 0.8077 ± 0.5081 mM, Vmax, l-Glu→d-Glu = 0.2421 ± 0.0418 mM min−1, kcat, l-Glu→d-Glu = 0.0378 ± 0.0056 s−1, kcat/Km, l-Glu→d-Glu = 0.0468 ± 0.0176 s−1 mM−1, with l-glutamate as substrate). S. mutans MurI possessed an assay temperature optimum of 37.5 °C and its optimum pH was 8.0. Conclusion The findings of this study provide insight into the structure and biochemical traits of the glutamate racemase in S. mutans and supply a conceivable guideline for employing glutamate racemase in anti-caries drug design

    Role of hippocampal subfields in neurodegenerative disease progression analyzed with a multi-scale attention-based network

    No full text
    Background and Objective: Both Alzheimer’s disease (AD) and Parkinson’s disease (PD) are progressive neurodegenerative diseases. Early identification is very important for the prevention and intervention of their progress. Hippocampus plays a crucial role in cognition, in which there are correlations between atrophy of Hippocampal subfields and cognitive impairment in neurodegenerative diseases. Exploring biomarkers in the prediction of early cognitive impairment in AD and PD is significant for understanding the progress of neurodegenerative diseases. Methods: A multi-scale attention-based deep learning method is proposed to perform computer-aided diagnosis for neurodegenerative disease based on Hippocampal subfields. First, the two dimensional (2D) Hippocampal Mapping Image (HMI) is constructed and used as input of three branches of the following network. Second, the multi-scale module and attention module are integrated into the 2D residual network to improve the diversity of the extracted features and capture significance of various voxels for classification. Finally, the role of Hippocampal subfields in the progression of different neurodegenerative diseases is analyzed using the proposed method. Results: Classification experiments between normal control (NC), mild cognitive impairment (MCI), AD, PD with normal cognition (PD-NC) and PD with mild cognitive impairment (PD-MCI) are carried out using the proposed method. Experimental results show that subfields subiculum, presubiculum, CA1, and molecular layer are strongly correlated with cognitive impairment in AD and MCI, subfields GC-DG and fimbria are sensitive in detecting early stage of cognitive impairment in MCI, subfields CA3, CA4, GC-DG, and CA1 show significant atrophy in PD. For exploring the role of Hippocampal subfields in PD cognitive impairment, we find that left parasubiculum, left HATA and left presubiculum could be important biomarkers for predicting conversion from PD-NC to PD-MCI. Conclusion: The proposed multi-scale attention-based network can effectively discover the correlation between subfields and neurodegenerative diseases. Experimental results are consistent with previous clinical studies, which will be useful for further exploring the role of Hippocampal subfields in neurodegenerative disease progression

    Comprehensive analysis of photosynthetic characteristics and quality improvement of purple cabbage under different combinations of monochromatic light

    Get PDF
    Light is essential for plant growth. Light intensity, photoperiod and light quality all affect plant morphology and physiology. Compared to light intensity, photoperiod, little is known about the effects of different monochromatic lights on crop species. To investigate how different lighting conditions influence crops with heterogeneous colors in leaves, we examined photosynthetic characteristics and quality (regarding edibility and nutrition) of purple cabbage under different combinations of lights. Eight different treatments were applied including monochromic red (R), monochromic blue (B), monochromic yellow (Y), monochromic green (G) and the combination of red and blue (3/1, RB), red/blue/yellow (3/1/1, RBY), red /blue/green (3/1/1,RBG) and white light as the control. Our results indicate that RBY (3/1/1) treatment promotes the PSII activity of purple cabbage, resulting in improved light energy utilization. By contrast, both G and Y lights alone have inhibitory effect on the PSII activity of purple cabbage. In addition, RBY (3/1/1) significantly boosts the anthocyanin and flavonoids content compared with other treatments. Although we detected highest soluble protein and vitamin C content under B treatment (increased by 29.99% and 14.29% compared with the control respectively), RBY (3/1/1) appeared to be the second-best lighting condition (with soluble protein and vitamin C content increased by 8.63% and 4.07% respectively compared with the control). Thus we prove that the addition of yellow light to the traditional combination of red/blue lighting conditions is beneficial to synthesizing photosynthetic pigments and enables superior outcome of purple cabbage growth. Our results indicate that the growth and nutritional quality of purple cabbage are greatly enhanced under RBY (3/1/1) light, and suggest that strategical management of lighting conditions holds promise in maximizing the economic efficiency of plant production and food quality of vegetables grown in controlled environments
    corecore