91 research outputs found

    Abrupt Transition from a Free, Repulsive to a Condensed, Attractive DNA Phase, Induced by Multivalent Polyamine Cations

    Full text link
    We have investigated the energetics of DNA condensation by multivalent polyamine cations. Solution small angle x-ray scattering was used to monitor interactions between short 25 base pair dsDNA strands in the free supernatant DNA phase that coexists with the condensed DNA phase. Interestingly, when tetravalent spermine is used, significant inter-DNA repulsion is observed in the free phase, in contrast with the presumed inter-DNA attraction in the coexisting condensed phase. DNA condensation thus appears to be a discrete, first-order-like, transition from a repulsive gaseous to an attractive condensed solid phase, in accord with the reported all-or-none condensation of giant DNA. We further quantify the electrostatic repulsive potentials in the free DNA phase and estimate the number of additional spermine cations that bind to DNA upon condensation

    Measuring Inter-DNA Potentials in Solution

    Full text link
    Interactions between short strands of DNA can be tuned from repulsive to attractive by varying solution conditions and have been quantified using small angle x-ray scattering techniques. The effective DNA interaction charge was extracted by fitting the scattering profiles with the generalized one-component method and inter-DNA Yukawa pair potentials. A significant charge is measured at low to moderate monovalent counterion concentrations, resulting in strong inter-DNA repulsion. The charge and repulsion diminish rapidly upon the addition of divalent counterions. An intriguing short range attraction is observed at surprisingly low divalent cation concentrations, ~16 mM Mg2+. Quantitative measurements of inter- DNA potentials are essential for improving models of fundamental interactions in biological systems

    Orbital correlations in the pseudo-cubic \emph{O} and rhombohedral R{R}-phases of LaMnO3_3

    Full text link
    The local and intermediate structure of stoichiometric LaMnO3_3 has been studied in the pseudocubic and rhombohedral phases at high temperatures (300 to 1150 K). Neutron powder diffraction data were collected and a combined Rietveld and high real space resolution atomic pair distribution function analysis carried out. The nature of the Jahn-Teller (JT) transition around 750 K is confirmed to be orbital order to disorder. In the high temperature orthorhombic (OO) and rhombohedral (RR) phases the MnO6_6 octahedra are still fully distorted locally. The data suggest the presence of local orbitally ordered clusters of diameter 16\sim 16 \AA (\simfour MnO6_6 octahedra) implying strong nearest neighbor JT anti-ferrodistortive coupling.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Le

    Inter-DNA Attraction Mediated by Divalent Counterions

    Full text link
    Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg2 ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg2] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin

    Mono- and Trivalent Ions around DNA: A Small-Angle Scattering Study of Competition and Interactions

    Full text link
    The presence of small numbers of multivalent ions in DNA-containing solutions results in strong attractive forces between DNA strands. Despite the biological importance of this interaction, e.g., DNA condensation, its physical origin remains elusive.Wecarried out a series of experiments to probe interactions between short DNA strands as small numbers of trivalent ions are included in a solution containing DNA and monovalent ions. Using resonant (anomalous) and nonresonant small angle x-ray scattering, we coordinated measurements of the number and distribution of each ion species around the DNA with the onset of attractive forces between DNA strands. DNA-DNA interactions occur as the number of trivalent ions increases. Surprisingly good agreement is found between data and size-corrected numerical Poisson-Boltzmann predictions of ion competition for non- and weakly interacting DNAs. We also obtained an estimate for the minimum number of trivalent ions needed to initiate DNA-DNA attraction

    Additive Modulation of DNA-DNA Interactions by Interstitial Ions

    Get PDF
    Quantitative understanding of biomolecular electrostatics, particularly involving multivalent ions and highly charged surfaces, remains lacking. Ion-modulated interactions between nucleic acids provide a model system in which electrostatics plays a dominant role. Using ordered DNA arrays neutralized by spherical cobalt3+ hexammine and Mg2+ ions, we investigate how the interstitial ions modulate DNA-DNA interactions. Using methods of ion counting, osmotic stress, and x-ray diffraction, we systematically determine thermodynamic quantities, including ion chemical potentials, ion partition, DNA osmotic pressure and force, and DNA-DNA spacing. Analyses of the multidimensional data provide quantitative insights into their interdependencies. The key finding of this study is that DNA-DNA forces are observed to linearly depend on the partition of interstitial ions, suggesting the dominant role of ion-DNA coupling. Further implications are discussed in light of physical theories of electrostatic interactions and like-charge attraction

    Elucidating Internucleosome Interactions and the Roles of Histone Tails

    Get PDF
    The nucleosome is the first level of genome organization and regulation in eukaryotes where negatively charged DNA is wrapped around largely positively charged histone proteins. Interaction between nucleosomes is dominated by electrostatics at long range and guided by specific contacts at short range, particularly involving their flexible histone tails. We have thus quantified how internucleosome interactions are modulated by salts (KCl, MgCl2) and histone tail deletions (H3, H4 N-terminal), using small-angle x-ray scattering and theoretical modeling. We found that measured effective charges at low salts are ∼1/5th of the theoretically predicted renormalized charges and that H4 tail deletion suppresses the attraction at high salts to a larger extent than H3 tail deletion

    Ion Competition in Condensed DNA Arrays in the Attractive Regime

    Get PDF
    AbstractPhysical origin of DNA condensation by multivalent cations remains unsettled. Here, we report quantitative studies of how one DNA-condensing ion (Cobalt3+ Hexammine, or Co3+Hex) and one nonDNA-condensing ion (Mg2+) compete within the interstitial space in spontaneously condensed DNA arrays. As the ion concentrations in the bath solution are systematically varied, the ion contents and DNA-DNA spacings of the DNA arrays are determined by atomic emission spectroscopy and x-ray diffraction, respectively. To gain quantitative insights, we first compare the experimentally determined ion contents with predictions from exact numerical calculations based on nonlinear Poisson-Boltzmann equations. Such calculations are shown to significantly underestimate the number of Co3+Hex ions, consistent with the deficiencies of nonlinear Poisson-Boltzmann approaches in describing multivalent cations. Upon increasing the concentration of Mg2+, the Co3+Hex-condensed DNA array expands and eventually redissolves as a result of ion competition weakening DNA-DNA attraction. Although the DNA-DNA spacing depends on both Mg2+ and Co3+Hex concentrations in the bath solution, it is observed that the spacing is largely determined by a single parameter of the DNA array, the fraction of DNA charges neutralized by Co3+Hex. It is also observed that only ∼20% DNA charge neutralization by Co3+Hex is necessary for spontaneous DNA condensation. We then show that the bath ion conditions can be reduced to one variable with a simplistic ion binding model, which is able to describe the variations of both ion contents and DNA-DNA spacings reasonably well. Finally, we discuss the implications on the nature of interstitial ions and cation-mediated DNA-DNA interactions
    corecore