243 research outputs found

    Decoding covert somatosensory attention by a BCI system calibrated with tactile sensation

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Objective: We propose a novel calibration strategy to facilitate the decoding of covert somatosensory attention by exploring the oscillatory dynamics induced by tactile sensation. Methods: It was hypothesized that the similarity of the oscillatory pattern between stimulation sensation (SS, real sensation) and somatosensory attentional orientation (SAO) provides a way to decode covert somatic attention. Subjects were instructed to sense the tactile stimulation, which was applied to the left (SS-L) or the right (SS-R) wrist. The BCI system was calibrated with the sensation data and then applied for online SAO decoding. Results: Both SS and SAO showed oscillatory activation concentrated on the contralateral somatosensory hemisphere. Offline analysis showed that the proposed calibration method led to greater accuracy than the traditional calibration method based on SAO only. This is confirmed by online experiments, where the online accuracy on 15 subjects was 78.8±13.1%, with 12 subjects >70% and 4 subject >90%. Conclusion: By integrating the stimulus-induced oscillatory dynamics from sensory cortex, covert somatosensory attention can be reliably decoded by a BCI system calibrated with tactile sensation. Significance: Indeed, real tactile sensation is more consistent during calibration than SAO. This brain-computer interfacing approach may find application for stroke and completely locked-in patients with preserved somatic sensation.University Starter Grant of the University of Waterloo (No. 203859) National Natural Science Foundation of China (Grant No. 51620105002

    Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    Get PDF
    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10% to 50%) of subjects are BCI-illiterate users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and ten healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately one minute). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r=-0.732, p<0.001), and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle) performance (r=0.641, p<0.001). Furthermore, the BCI-illiterate users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-illiterate users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-illiteracy phenomenon in stroke patients.National Natural Science Foundation of China (Grant No. 51620105002) National High Technology Research and Development Program (863 Program) of China (Grant No.2015AA020501

    Historical context modifies plant diversity–community productivity relationships in alpine grassland

    Full text link
    While most studies yield positive relationships between biodiversity (B) and ecosystem functioning (EF), awareness is growing that BEF relationships can vary with ecological context. The awareness has led to increased efforts to understand how contemporary environmental context modifies BEF relationships, but the role of historical context, and the mechanisms by which it may influence biodiversity effects, remains poorly understood. We examined how historical context alters plant diversity–community productivity relationships via plant species interactions in alpine grassland. We also tested how historical context modifies interactions between plants and arbuscular mycorrhizal (AM) fungi, which can potentially mediate the above processes. We studied biodiversity effects on plant community productivity at two grassland sites with different histories related to grazing intensity—heavy versus light livestock grazing—but similar current management. We assembled experimental communities of identical species composition with plants from each of the two sites in disturbed soil from a contemporary heavily grazed grassland, ranging in species richness from one to two, three and six species. Moreover, we carried out a mycorrhizal hyphae-exclusion experiment to test how plant interactions with AM fungi influence plant responses to historical context. We detected a significantly positive diversity–productivity relationship that was driven by complementarity effects in communities composed of plants from the site without heavy-grazing history, but no such relationship in plant communities composed of plants from the site with heavy-grazing history. Plants from the site with heavy-grazing history had increased competitive ability and increased yields in low-diversity communities but disrupted complementarity effects in high-diversity communities. Moreover, plants of one species from the site with heavy-grazing history benefitted more from AM fungal communities than did plants from the site without such history. Synthesis. Using the same experimental design and species, communities assembled by plants from two sites with different historical contexts showed different plant diversity–community productivity relationships. Our results suggest that historical context can alter plant diversity–community productivity relationships via plant species interactions and potentially plant–soil interactions. Therefore, considering historical contexts of ecological communities is of importance for advancing our understanding of long-term impacts of anthropogenic disturbance on ecosystem functioning

    Performance of Brain-Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery

    Get PDF
    © 2017 IEEE.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A large proportion of users do not achieve adequate control using current non-invasive Brain-computer Interfaces (BCI). This issue has being coined “BCI-Illiteracy”, and is observed among BCI modalities. Here, we compare the performance and BCI-illiteracy rate of tactile selective sensation (SS) and motor imagery (MI) BCI, for large subject samples. We analyzed 80 experimental sessions from 57 subjects with two-class SS protocols. For SS, the group average performance was 79.8±10.6%, with 43 out of the 57 subjects (75.4%) exceeding the 70% BCI-illiteracy threshold for left and right hand SS discrimination. When compared to previous results, this tactile BCI outperformed all other tactile BCIs currently available. We also analyzed 63 experiment sessions from 43 subjects with two-class MI BCI protocols, where the group average performance was 77.2±13.3%, with 69.7% of the subjects exceeded the 70% performance threshold for left and right hand MI. For within-subject comparison, the 24 subjects who participated to both the SS and MI experiments, the BCI performance was superior with SS than MI especially in beta frequency band (p<0.05), with enhanced R2 discriminative information in the somatosensory cortex for the SS modality. Both SS and MI showed a functional dissociation between lower alpha ([8 10] Hz) and upper alpha ([10 13] Hz) bands, with BCI performance significantly better in the upper alpha than the lower alpha (p<0.05) band. In summary, we demonstrated that SS is a promising BCI modality with low BCI illiteracy issue, and has great potential in practical applications reaching large population.University Starter Grant of the University of Waterloo [No. 203859]National Natural Science Foundation of China [Grant No. 51620105002

    Sensory Stimulation Training for BCI System based on Somatosensory Attentional Orientation

    Get PDF
    © 2018 IEEE.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this study, we propose a sensory stimulation training (SST) approach to improve the performance of a brain-computer interface (BCI) based on somatosensory attentional orientation (SAO). In this BCI, subjects imagine the tactile sensation and maintain the attention on the corresponding hand as if there was a tactile stimulus on the wrist skin. Twenty BCI naive subjects were recruited and randomly divided into a Control-Group and an SST-Group. In the Control-Group, subjects performed left hand and right hand SAO tasks in six consecutive runs (with 40 trials in each run), divided into three blocks with each having two runs. For the SST-Group, two runs included real tactile stimulation to the left or right hand (SST training block), between the first two (Pre-SST block) and the last two SAO runs (Post-SST block). Results showed that the SST-Group had a significantly improved performance of 9.4% between the last block and the first block after SST training (F(2,18) =11.11, p=0.0007); in contrast, no significant difference was found in the Control-Group between the first, second and the last block (F(2,18) = 2.07, p=0.1546), indicating no learning effect. The tactile sensation-induced oscillatory dynamics were similar to those induced by SAO. In the SST-Group, R2 discriminative information was enhanced around the somatosensory cortex due to the real sensory stimulation as compared with that in the Control-Group. Since the SAO mental task is inherently an internal process, the proposed SST method is meant as an adjuvant to SAO to facilitate subjects in achieving an initial SAO-based BCI control.University Starter Grant of the University of Waterloo (No. 203859)National Natural Science Foundation of China (Grant No. 51620105002)
    • …
    corecore