155 research outputs found

    Beyond Single Instance Multi-view Unsupervised Representation Learning

    Full text link
    Recent unsupervised contrastive representation learning follows a Single Instance Multi-view (SIM) paradigm where positive pairs are usually constructed with intra-image data augmentation. In this paper, we propose an effective approach called Beyond Single Instance Multi-view (BSIM). Specifically, we impose more accurate instance discrimination capability by measuring the joint similarity between two randomly sampled instances and their mixture, namely spurious-positive pairs. We believe that learning joint similarity helps to improve the performance when encoded features are distributed more evenly in the latent space. We apply it as an orthogonal improvement for unsupervised contrastive representation learning, including current outstanding methods SimCLR, MoCo, and BYOL. We evaluate our learned representations on many downstream benchmarks like linear classification on ImageNet-1k and PASCAL VOC 2007, object detection on MS COCO 2017 and VOC, etc. We obtain substantial gains with a large margin almost on all these tasks compared with prior arts.Comment: A plug-in approach with minimal modification to existing methods based on instance discriminatio

    ROME: Robustifying Memory-Efficient NAS via Topology Disentanglement and Gradients Accumulation

    Full text link
    Single-path based differentiable neural architecture search has great strengths for its low computational cost and memory-friendly nature. However, we surprisingly discover that it suffers from severe searching instability which has been primarily ignored, posing a potential weakness for a wider application. In this paper, we delve into its performance collapse issue and propose a new algorithm called RObustifying Memory-Efficient NAS (ROME). Specifically, 1) for consistent topology in the search and evaluation stage, we involve separate parameters to disentangle the topology from the operations of the architecture. In such a way, we can independently sample connections and operations without interference; 2) to discount sampling unfairness and variance, we enforce fair sampling for weight update and apply a gradient accumulation mechanism for architecture parameters. Extensive experiments demonstrate that our proposed method has strong performance and robustness, where it mostly achieves state-of-the-art results on a large number of standard benchmarks.Comment: Observe new collapse in memory efficient NAS and address it using ROM

    Stepped Fault Line Selection Method Based on Spectral Kurtosis and Relative Energy Entropy of Small Current to Ground System

    Get PDF
    This paper proposes a stepped selection method based on spectral kurtosis relative energy entropy. Firstly, the length and type of window function are set; then when fault occurs, enter step 1: the polarity of first half-wave extremes is analyzed; if the ratios of extremes between neighboring lines are positive, the bus bar is the fault line, else, the SK relative energy entropies are calculated, and then enter step 2: if the obtained entropy multiple is bigger than the threshold or equal to the threshold, the overhead line of max entropy corresponding is the fault line, if not, enter step 3: the line of max entropy corresponding is the fault line. At last, the applicability of the proposed algorithm is presented, and the comparison results are discussed

    SegViT: Semantic Segmentation with Plain Vision Transformers

    Full text link
    We explore the capability of plain Vision Transformers (ViTs) for semantic segmentation and propose the SegVit. Previous ViT-based segmentation networks usually learn a pixel-level representation from the output of the ViT. Differently, we make use of the fundamental component -- attention mechanism, to generate masks for semantic segmentation. Specifically, we propose the Attention-to-Mask (ATM) module, in which the similarity maps between a set of learnable class tokens and the spatial feature maps are transferred to the segmentation masks. Experiments show that our proposed SegVit using the ATM module outperforms its counterparts using the plain ViT backbone on the ADE20K dataset and achieves new state-of-the-art performance on COCO-Stuff-10K and PASCAL-Context datasets. Furthermore, to reduce the computational cost of the ViT backbone, we propose query-based down-sampling (QD) and query-based up-sampling (QU) to build a Shrunk structure. With the proposed Shrunk structure, the model can save up to 40%40\% computations while maintaining competitive performance.Comment: 9 Pages, NeurIPS 202
    • …
    corecore