43 research outputs found

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Structure‐Activity Relationship of Defective Metal‐Based Photocatalysts for Water Splitting: Experimental and Theoretical Perspectives

    No full text
    Abstract Photocatalytic water splitting is promising for hydrogen energy production using solar energy and developing highly efficient photocatalysts is challenging. Defect engineering is proved to be a very useful strategy to promote the photocatalytic performance of metal‐based photocatalysts, however, the vital role of defects is still ambiguous. This work comprehensively reviews point defective metal‐based photocatalysts for water splitting, focusing on understanding the defects' disorder effect on optical adsorption, charge separation and migration, and surface reaction. The controllable synthesis and tuning strategies of defective structure to improve the photocatalytic performance are summarized, then the characterization techniques and density functional theory calculations are discussed to unveil the defect structure, and analyze the defects induced electronic structure change of catalysts and its ultimate effect on the photocatalytic activity at the molecular level. Finally, the challenge in developing more efficient defective metal‐based photocatalysts is outlined. This work may help further the understanding of the fundamental role of defect structure in the photocatalytic reaction process and guide the rational design and fabrication of highly efficient and low‐cost photocatalysts

    Identification and Fine Mapping of a Quantitative Trait Locus Controlling the Total Flower and Pod Numbers in Soybean

    No full text
    Total flower and pod numbers (TFPN) and effective pod numbers per plant (PNPP) are among the most important agronomic traits for soybean production. However, the underlying genetic mechanism remains unclear. In this study, we constructed a recombinant inbred line population derived from a cross between JY73 (high TFPN) and TJSLH (low TFPN) to map loci for the two traits. In total, six QTL for TFPN and five QTL for PNPP were identified, among which a QTL on chromosome 4, named qFPN4, explained 9.2% and 9.6% of the phenotypic variation of TFPN and PNPP, respectively. Analysis of residual heterozygous lines for qFPN4 indicated that TFPN or PNPP was controlled by a single dominant gene at this locus and delimited the QTL into a ~2.62 Mb interval which tightly linked to an Indel marker C1-5. This mapping result was further confirmed by bulked segregant analysis (BSA) of the near isogenic lines. The genome-sequencing-based BSA also identified eight candidate genes carrying nonsynonymous SNPs and/or Indels; two genes, Glyma.04G176600 and Glyma.04G178900, were nominated as the most promising genes for qFPN4 based on additional expression and function analysis. These results improve our understanding of the genetic mechanism of TFPN and PNPP and indicate the potential for soybean yield improvement

    Thermally Stable Guest-Host Polyetherketone Poled Polymer for Electro-Optical Applications

    No full text
    The high glass transition temperature polymer polyetherketone doped with disperse red 13 (DR13/PEK-c) has been prepared by the spin-coating method. Through in situ second-harmonic generation, the corona poling temperature was optimized by measuring the temperature dependence of the in situ second-harmonic generation signal intensity under the poling electric field. The linear electro-optic coefficients of the poled polymer films have been determined at 632.8 nm by using a simple interferometric technique. The polymer system was measured after 13 000 h, and found that it remained at 80% of its initial value

    Demystifying uneven vulnerability of link stealing attacks against Graph Neural Networks

    No full text
    While graph neural networks (GNNs) dominate the state-of-the-art for exploring graphs in real-world applications, they have been shown to be vulnerable to a growing number of privacy attacks. For instance, link stealing is a well-known membership inference attack (MIA) on edges that infers the presence of an edge in a GNN's training graph. Recent studies on independent and identically distributed data (e.g., images) have empirically demonstrated that individuals from different groups suffer from different levels of privacy risks to MIAs, i.e., uneven vulnerability. However, theoretical evidence for such uneven vulnerability is missing. In this paper, we first present theoretical evidence of the uneven vulnerability of GNNs to link stealing attacks, which lays the foundation for demystifying such uneven risks among different groups of edges. We further demonstrate a group-based attack paradigm to expose the practical privacy harm to GNN users derived from the uneven vulnerability of edges. Finally, we empirically validate the existence of obvious uneven vulnerability on ten real-world datasets (e.g., about 25% AUC difference between different groups in the Credit graph). Compared with existing methods, the outperformance of our group-based attack paradigm confirms that customising different strategies for different groups results in more effective privacy attacks.</p

    Breaking Trade‐Off between Selectivity and Activity of Nickel‐Based Hydrogenation Catalysts by Tuning Both Steric Effect and d‐Band Center

    No full text
    Abstract For selective hydrogenation of chemicals the high selectivity is always at the expense of activity and improving both selectivity and activity is challenging. Here, by chelating with p‐fluorothiophenol (SPhF)‐arrays, both steric and electronic effects are created to boost the performance of cheap nickel‐based catalysts. Compared with dinickel phosphide, the SPhF‐chelated one exhibits nearly 12 times higher activity and especially its selectivity is increased from 38.1% and 21.3% to nearly 100% in hydrogenations of 3‐nitrostyrene and cinnamaldehyde. Commercial catalysts like Raney Ni chelating with SPhF‐array also exhibits an enhanced selectivity from 20.5% and 23.4% to ≈100% along with doubled activity. Both experimental and density functional theory (DFT) calculation prove that the superior performance is attributed to the confined flat adsorption by ordered SPhF‐arrays and downshifted d‐band center of catalysts, leading to prohibited hydrogenation of the vinyl group and accelerative H2 activation. Such a surface modification can provide an easily‐realized and low‐cost way to design catalysts for the selective hydrogenation

    Spin selection in atomic-level chiral metal oxide for photocatalysis

    No full text
    Abstract The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis
    corecore