54 research outputs found

    Characterizing the Personalized Microbiota Dynamics for Disease Classification by Individual-Specific Edge-Network Analysis

    Get PDF
    Environmental factors such as the gut microbiome are thought to play an important role in the development and treatment of many diseases. But our understanding of microbiota compositional dynamics is still unclear and incomplete because the intestinal microbial community is an easily-changed ecosystem. It is urgently required to understand the large variations among individuals. These variations, however, will be an asset rather than a limitation to personalized medicine. For a proof-of-concept study on individual-specific disease classification based on microbiota compositional dynamics, we implemented an adjusted individual-specific edge-network analysis (iENA) method to address a limited number of samples from one individual, and compared it to the temporal 16S rRNA (ribosomal RNA) gene sequencing data from individuals in a challenge study. Our identified individual-specific OTU markers or their combined markers are consistent with previously reported markers, and the predictive score based on them can perform a better AUROC than the previous 0.83 and achieve about 90% accuracy on predicting whether an individual developed diarrhea [i.e., were symptomatic (Sx)] or not. In addition, iENA also showed satisfactory efficiency on another dataset about bacterial vaginosis (BV). All these results suggest that the combination of high-throughput microbiome experiments and computational systems biology approaches can efficiently recommend potential candidate species in the defense against various pathogens for precision medicine

    In-situ structural identification of Zr3Al2 type metastable phase during crystallization of a Zr-based MG

    Get PDF
    A metastable phase was detected using higher energy synchrotron radiation when Zr-based metallic glass (MG) was annealed under vacuum in Linkam hot stage at 848 K. The formation and transformation processes of metastable phase were recorded by synchrotron radiation method. The metastable phase during crystallization was identified as Zr3Al2 structure type according to powder diffraction and TEM analysis. The structure of Zr3Al2 type MCP was experimentally evidenced by 3D diffraction patterns and mathematically described. The identification of Zr3Al2 MCP could be helpful for the understanding of cluster structure of MG

    Identifying Critical State of Complex Diseases by Single-Sample-Based Hidden Markov Model

    Get PDF
    The progression of complex diseases is generally divided as a normal state, a pre-disease state or tipping point, and a disease state. Developing individual-specific method that can identify the pre-disease state just before a catastrophic deterioration, is critical for patients with complex diseases. However, with only a case sample, it is challenging to detect a pre-disease state which has little significant differences comparing with a normal state in terms of phenotypes and gene expressions. In this study, by regarding the tipping point as the end point of a stationary Markov process, we proposed a single-sample-based hidden Markov model (HMM) approach to explore the dynamical differences between a normal and a pre-disease states, and thus can signal the upcoming critical transition immediately after a pre-disease state. Using this method, we identified the pre-disease state or tipping point in a numerical simulation and two real datasets including stomach adenocarcinoma and influenza infection, which demonstrate the effectiveness of the method

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia : The CREAM Consortium

    Get PDF
    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).Peer reviewe

    A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration

    Get PDF
    Background High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ −6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER. Methods The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression. Findings In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17–21%), 2% (1–3%), 8% (7–10%) and 6% (3–9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75–0.81), 0.58 (0.53–0.64), 0.71 (0.69–0.74) and 0.67 (0.62–0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92–1.24). Interpretation Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted fo

    L'Écho : grand quotidien d'information du Centre Ouest

    Full text link
    23 septembre 19341934/09/23 (A63).Appartient à l’ensemble documentaire : PoitouCh
    corecore