35 research outputs found

    Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response

    Get PDF
    Immunotherapy is one of the key strategies for cancer treatment. The cGAS-cGAMP-STING-IRF3 pathway of cytosolic DNA sensing plays a pivotal role in antiviral defense. We report that the STING activator cGAMP possesses significant antitumor activity in mice by triggering the STING-dependent pathway directly. cGAMP enhances innate immune responses by inducing production of cytokines such as interferon-β, interferon-γ, and stimulating dendritic cells activation, which induces the cross-priming of CD8(+) T cells. The antitumor mechanism of cGAMP was verified by STING and IRF3, which were up-regulated upon cGAMP treatment. STING-deficiency dramatically reduced the antitumor effect of cGAMP. Furthermore, cGAMP improved the antitumor activity of 5-FU, and clearly reduced the toxicity of 5-FU. These results demonstrated that cGAMP is a novel antitumor agent and has potential applications in cancer immunotherapy

    Conformational Toggling of Yeast Iso-1-Cytochrome c in the Oxidized and Reduced States

    Get PDF
    To convert cyt c into a peroxidase-like metalloenzyme, the P71H mutant was designed to introduce a distal histidine. Unexpectedly, its peroxidase activity was found even lower than that of the native, and that the axial ligation of heme iron was changed to His71/His18 in the oxidized state, while to Met80/His18 in the reduced state, characterized by UV-visible, circular dichroism, and resonance Raman spectroscopy. To further probe the functional importance of Pro71 in oxidation state dependent conformational changes occurred in cyt c, the solution structures of P71H mutant in both oxidation states were determined. The structures indicate that the half molecule of cyt c (aa 50–102) presents a kind of “zigzag riveting ruler” structure, residues at certain positions of this region such as Pro71, Lys73 can move a big distance by altering the tertiary structure while maintaining the secondary structures. This finding provides a molecular insight into conformational toggling in different oxidation states of cyt c that is principle significance to its biological functions in electron transfer and apoptosis. Structural analysis also reveals that Pro71 functions as a key hydrophobic patch in the folding of the polypeptide of the region (aa 50–102), to prevent heme pocket from the solvent

    Development of Novel Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Tumor Immunotherapy

    No full text
    The cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes–TANK-binding kinase 1–interferon regulating factor 3 (cGAS-STING-TBK1-IRF3) axis is now acknowledged as the major signaling pathway in innate immune responses. However, 2′,3′-cGAMP as a STING stimulator is easily recognized and degraded by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which reduces the effect of tumor immunotherapy and promotes metastatic progression. In this investigation, the structure-based virtual screening strategy was adopted to discover eight candidate compounds containing zinc-binding quinazolin-4(3H)-one scaffold as ENPP1 inhibitors. Subsequently, these novel inhibitors targeting ENPP1 were synthesized and characterized by NMR and high-resolution mass spectra (HRMS). In bioassays, 7-fluoro-2-(((5-methoxy-1H-imidazo[4,5-b]pyridin-2-yl)thio)methyl)quina-zolin-4(3H)-one(compound 4e) showed excellent activity against the ENPP1 at the molecular and cellular levels, with IC50 values of 0.188 μM and 0.732 μM, respectively. Additionally, compound 4e had superior selectivity towards metastatic breast cancer cells (4T1) than towards normal cells (LO2 and 293T) in comparison with cisplatin, indicating that compound 4e can potentially be used in metastatic breast cancer therapy. On the other hand, compound 4e upgraded the expression levels of IFN-β in vivo by preventing the ENPP1 from hydrolyzing the cGAMP to stimulate a more potent innate immune response. Therefore, this compound might be applied to boost antitumor immunity for cancer immunotherapy. Overall, our work provides a strategy for the development of a promising drug candidate targeting ENPP1 for tumor immunotherapy

    The Δ33-35 Mutant α-Domain Containing β-Domain-Like M3S9 Cluster Exhibits the Function of α-Domain with M4S11 Cluster in Human Growth Inhibitory Factor

    Get PDF
    Neuronal growth inhibitory factor (GIF), also known as metallothionein (metallothionein-3), impairs the survival and neurite formation of cultured neurons. It is known that the α-β domain-domain interaction of hGIF is crucial to the neuron growth inhibitory bioactivity although the exact mechanism is not clear. Herein, the β(MT3)-β(MT3) mutant and the hGIF-truncated Δ33-35 mutant were constructed, and their biochemical properties were characterized by pH titration, EDTA, and DTNB reactions. Their inhibitory activity toward neuron survival and neurite extension was also examined. We found that the Δ33-35 mutant α-domain containing β-domain-like M3S9 cluster exhibits the function of α-domain with M4S11 cluster in hGIF. These results showed that the stability and solvent accessibility of the metal-thiolate cluster in β-domain is very significant to the neuronal growth inhibitory activity of hGIF and also indicated that the particular primary structure of α-domain is pivotal to domain-domain interaction in hGIF
    corecore