8 research outputs found

    Periodic Electro-Optical Characteristics of PDLC Film Driven by a Low-Frequency Square Wave Voltage

    No full text
    The electro-optical features of the PDLC films applied with a low-frequency square wave voltage were investigated. The transmittance curves indicated the double frequency of the applied voltage at 0–50 Hz, which resulted from the relaxation of an internal electric field polarized by ions in LC droplets. When the local electric field was reversed, the internal polarization electric field could be maintained and superimposed on the local electric field. The relaxation of the internal polarized electric field resulted in the relaxation of the transmittance. Furthermore, the transmittance curves changed with the frequency of the applied voltage

    Periodic Electro-Optical Characteristics of PDLC Film Driven by a Low-Frequency Square Wave Voltage

    No full text
    The electro-optical features of the PDLC films applied with a low-frequency square wave voltage were investigated. The transmittance curves indicated the double frequency of the applied voltage at 0–50 Hz, which resulted from the relaxation of an internal electric field polarized by ions in LC droplets. When the local electric field was reversed, the internal polarization electric field could be maintained and superimposed on the local electric field. The relaxation of the internal polarized electric field resulted in the relaxation of the transmittance. Furthermore, the transmittance curves changed with the frequency of the applied voltage

    Preparation of Magnetic Nanoparticles via a Chemically Induced Transition: Role of Treating Solution’s Temperature

    No full text
    Using FeOOH/Mg(OH)2 as precursor and FeCl2 as the treating solution, we prepared γ-Fe2O3 based nanoparticles. The FeCl2 treating solution catalyzes the chemical reactions, dismutation and oxygenation, leading to the formation of products FeCl3 and Fe2O3, respectively. The treating solution (FeCl2) accelerates dehydration of the FeOOH compound in the precursor and transforms it into the initial seed crystallite γ-Fe2O3. Fe2O3 grows epitaxially on the initial seed crystallite γ-Fe2O3. The epitaxial layer has a magnetically silent surface, which does not have any magnetization contribution toward the breaking of crystal symmetry. FeCl3 would be absorbed to form the FeCl3·6H2O surface layer outside the particles to form γ-Fe2O3/FeCl3·6H2O nanoparticles. When the treating solution’s temperature is below 70 °C, the dehydration reaction of FeOOH is incomplete and the as-prepared samples are a mixture of both FeOOH and γ-Fe2O3/FeCl3·6H2O nanoparticles. As the treating solution’s temperature increases from 70 to 90 °C, the contents of both FeCl3·6H2O and the epitaxial Fe2O3 increased in totality

    Apparently enhanced magnetization of Cu(I)-modified

    No full text
    Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3⋅6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent “dead layer”, which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which “awakened” the “dead layer” on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles

    Improvement of Image Sticking in Liquid Crystal Display Doped with γ-Fe2O3 Nanoparticles

    No full text
    Image sticking in thin film transistor-liquid crystal displays (TFT-LCD) is related to the dielectric property of liquid crystal (LC) material. Low threshold value TFT LC materials have a weak stability and the free ions in them will be increased because of their own decomposition. In this study, the property of TFT LC material MAT-09-1284 doped with γ-Fe2O3 nanoparticles was investigated. The capacitances of parallel-aligned nematic LC cells and vertically aligned nematic LC cells with different doping concentrations were measured at different temperatures and frequencies. The dielectric constants perpendicular and parallel to long axis of the LC molecules ε⊥ and ε//, as well as the dielectric anisotropy Δε, were obtained. The dynamic responses and the direct current threshold voltages in parallel-aligned nematic LC cells for different doping concentrations were also measured. Although the dielectric anisotropy Δε decreased gradually with increasing temperature and frequency at the certain frequency and temperature in LC state for each concentration, the doping concentration of γ-Fe2O3 nanoparticles less than or equal to 0.145 wt % should be selected for maintaining dynamic response and decreasing free ions. This study has some guiding significance for improving the image sticking in TFT-LCD

    Enhancement of Image Quality in LCD by Doping γ-Fe<sub>2</sub>O<sub>3</sub> Nanoparticles and Reducing Friction Torque Difference

    No full text
    Improving image sticking in liquid crystal display (LCD) has attracted tremendous interest because of its potential to enhance the quality of the display image. Here, we proposed a method to evaluate the residual direct current (DC) voltage by varying liquid crystal (LC) cell capacitance under the combined action of alternating current (AC) and DC signals. This method was then used to study the improvement of image sticking by doping &#947;-Fe2O3 nanoparticles into LC materials and adjusting the friction torque difference of the upper and lower substrates. Detailed analysis and comparison of residual characteristics for LC materials with different doping concentrations revealed that the LC material, added with 0.02 wt% &#947;-Fe2O3 nanoparticles, can absorb the majority of free ions stably, thereby reducing the residual DC voltage and extending the time to reach the saturated state. The physical properties of the LC materials were enhanced by the addition of a small amount of nanoparticles and the response time of doping 0.02 wt% &#947;-Fe2O3 nanoparticles was about 10% faster than that of pure LC. Furthermore, the lower absolute value of the friction torque difference between the upper and lower substrates contributed to the reduction of the residual DC voltage induced by ion adsorption in the LC cell under the same conditions. To promote the image quality of different display frames in the switching process, we added small amounts of the nanoparticles to the LC materials and controlled friction technology accurately to ensure the same torque. Both approaches were proven to be highly feasible
    corecore