113 research outputs found

    Multilabel Consensus Classification

    Full text link
    In the era of big data, a large amount of noisy and incomplete data can be collected from multiple sources for prediction tasks. Combining multiple models or data sources helps to counteract the effects of low data quality and the bias of any single model or data source, and thus can improve the robustness and the performance of predictive models. Out of privacy, storage and bandwidth considerations, in certain circumstances one has to combine the predictions from multiple models or data sources to obtain the final predictions without accessing the raw data. Consensus-based prediction combination algorithms are effective for such situations. However, current research on prediction combination focuses on the single label setting, where an instance can have one and only one label. Nonetheless, data nowadays are usually multilabeled, such that more than one label have to be predicted at the same time. Direct applications of existing prediction combination methods to multilabel settings can lead to degenerated performance. In this paper, we address the challenges of combining predictions from multiple multilabel classifiers and propose two novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and MLCM-a (MLCM for microAUC). These algorithms can capture label correlations that are common in multilabel classifications, and optimize corresponding performance metrics. Experimental results on popular multilabel classification tasks verify the theoretical analysis and effectiveness of the proposed methods

    Dynamic aspiration based on Win-Stay-Lose-Learn rule in Spatial Prisoner's Dilemma Gam

    Full text link
    Prisoner's dilemma game is the most commonly used model of spatial evolutionary game which is considered as a paradigm to portray competition among selfish individuals. In recent years, Win-Stay-Lose-Learn, a strategy updating rule base on aspiration, has been proved to be an effective model to promote cooperation in spatial prisoner's dilemma game, which leads aspiration to receive lots of attention. But in many research the assumption that individual's aspiration is fixed is inconsistent with recent results from psychology. In this paper, according to Expected Value Theory and Achievement Motivation Theory, we propose a dynamic aspiration model based on Win-Stay-Lose-Learn rule in which individual's aspiration is inspired by its payoff. It is found that dynamic aspiration has a significant impact on the evolution process, and different initial aspirations lead to different results, which are called Stable Coexistence under Low Aspiration, Dependent Coexistence under Moderate aspiration and Defection Explosion under High Aspiration respectively. Furthermore, a deep analysis is performed on the local structures which cause cooperator's existence or defector's expansion, and the evolution process for different parameters including strategy and aspiration. As a result, the intrinsic structures leading to defectors' expansion and cooperators' survival are achieved for different evolution process, which provides a penetrating understanding of the evolution. Compared to fixed aspiration model, dynamic aspiration introduces a more satisfactory explanation on population evolution laws and can promote deeper comprehension for the principle of prisoner's dilemma.Comment: 17 pages, 13 figure

    Large-Scale Multi-Label Learning with Incomplete Label Assignments

    Full text link
    Multi-label learning deals with the classification problems where each instance can be assigned with multiple labels simultaneously. Conventional multi-label learning approaches mainly focus on exploiting label correlations. It is usually assumed, explicitly or implicitly, that the label sets for training instances are fully labeled without any missing labels. However, in many real-world multi-label datasets, the label assignments for training instances can be incomplete. Some ground-truth labels can be missed by the labeler from the label set. This problem is especially typical when the number instances is very large, and the labeling cost is very high, which makes it almost impossible to get a fully labeled training set. In this paper, we study the problem of large-scale multi-label learning with incomplete label assignments. We propose an approach, called MPU, based upon positive and unlabeled stochastic gradient descent and stacked models. Unlike prior works, our method can effectively and efficiently consider missing labels and label correlations simultaneously, and is very scalable, that has linear time complexities over the size of the data. Extensive experiments on two real-world multi-label datasets show that our MPU model consistently outperform other commonly-used baselines

    Efficient Link Prediction in Continuous-Time Dynamic Networks using Optimal Transmission and Metropolis Hastings Sampling

    Full text link
    Efficient link prediction in continuous-time dynamic networks is a challenging problem that has attracted much research attention in recent years. A widely used approach to dynamic network link prediction is to extract the local structure of the target link through temporal random walk on the network and learn node features using a coding model. However, this approach often assumes that candidate temporal neighbors follow some certain types of distributions, which may be inappropriate for real-world networks, thereby incurring information loss. To address this limitation, we propose a framework in continuous-time dynamic networks based on Optimal Transmission (OT) and Metropolis Hastings (MH) sampling (COM). Specifically, we use optimal transmission theory to calculate the Wasserstein distance between the current node and the time-valid candidate neighbors to minimize information loss in node information propagation. Additionally, we employ the MH algorithm to obtain higher-order structural relationships in the vicinity of the target link, as it is a Markov Chain Monte Carlo method and can flexibly simulate target distributions with complex patterns. We demonstrate the effectiveness of our proposed method through experiments on eight datasets from different fields.Comment: 11 pages, 7 figure

    Explaining Latent Factor Models for Recommendation with Influence Functions

    Full text link
    Latent factor models (LFMs) such as matrix factorization achieve the state-of-the-art performance among various Collaborative Filtering (CF) approaches for recommendation. Despite the high recommendation accuracy of LFMs, a critical issue to be resolved is the lack of explainability. Extensive efforts have been made in the literature to incorporate explainability into LFMs. However, they either rely on auxiliary information which may not be available in practice, or fail to provide easy-to-understand explanations. In this paper, we propose a fast influence analysis method named FIA, which successfully enforces explicit neighbor-style explanations to LFMs with the technique of influence functions stemmed from robust statistics. We first describe how to employ influence functions to LFMs to deliver neighbor-style explanations. Then we develop a novel influence computation algorithm for matrix factorization with high efficiency. We further extend it to the more general neural collaborative filtering and introduce an approximation algorithm to accelerate influence analysis over neural network models. Experimental results on real datasets demonstrate the correctness, efficiency and usefulness of our proposed method
    corecore