71 research outputs found

    Consistent Computation of First- and Second-Order Differential Quantities for Surface Meshes

    Full text link
    Differential quantities, including normals, curvatures, principal directions, and associated matrices, play a fundamental role in geometric processing and physics-based modeling. Computing these differential quantities consistently on surface meshes is important and challenging, and some existing methods often produce inconsistent results and require ad hoc fixes. In this paper, we show that the computation of the gradient and Hessian of a height function provides the foundation for consistently computing the differential quantities. We derive simple, explicit formulas for the transformations between the first- and second-order differential quantities (i.e., normal vector and principal curvature tensor) of a smooth surface and the first- and second-order derivatives (i.e., gradient and Hessian) of its corresponding height function. We then investigate a general, flexible numerical framework to estimate the derivatives of the height function based on local polynomial fittings formulated as weighted least squares approximations. We also propose an iterative fitting scheme to improve accuracy. This framework generalizes polynomial fitting and addresses some of its accuracy and stability issues, as demonstrated by our theoretical analysis as well as experimental results.Comment: 12 pages, 12 figures, ACM Solid and Physical Modeling Symposium, June 200

    Robust Discontinuity Indicators for High-Order Reconstruction of Piecewise Smooth Functions

    Full text link
    In many applications, piecewise continuous functions are commonly interpolated over meshes. However, accurate high-order manipulations of such functions can be challenging due to potential spurious oscillations known as the Gibbs phenomena. To address this challenge, we propose a novel approach, Robust Discontinuity Indicators (RDI), which can efficiently and reliably detect both C^{0} and C^{1} discontinuities for node-based and cell-averaged values. We present a detailed analysis focusing on its derivation and the dual-thresholding strategy. A key advantage of RDI is its ability to handle potential inaccuracies associated with detecting discontinuities on non-uniform meshes, thanks to its innovative discontinuity indicators. We also extend the applicability of RDI to handle general surfaces with boundaries, features, and ridge points, thereby enhancing its versatility and usefulness in various scenarios. To demonstrate the robustness of RDI, we conduct a series of experiments on non-uniform meshes and general surfaces, and compare its performance with some alternative methods. By addressing the challenges posed by the Gibbs phenomena and providing reliable detection of discontinuities, RDI opens up possibilities for improved approximation and analysis of piecewise continuous functions, such as in data remap.Comment: 37 pages, 37 figures, submitted to Computational and Applied Mathematics (COAM
    • …
    corecore