72 research outputs found

    Molecular dynamics simulation of surfactant induced wettability alteration of shale reservoirs

    Get PDF
    Shale oil has recently received considerable attention as a promising energy source due to its substantial reserves. However, the recovery of shale oil presents numerous challenges due to the low-porosity and low-permeability characteristics of shale reservoirs. To tackle this challenge, the introduction of surfactants capable of modifying wettability has been employed to enhance shale oil recovery. In this study, we perform molecular dynamics simulations to investigate the influence of surfactants on the alteration of wettability in shale reservoirs. Firstly, surfaces of kaolinite, graphene, and kerogen are constructed to represent the inorganic and organic constituents of shale reservoirs. The impact and underlying mechanisms of two types of ionic surfactants, namely, the anionic surfactant sodium dodecylbenzene sulfonate (SDBS) and cationic surfactant dodecyltrimethylammonium bromide (DTAB), on the wettability between oil droplets and surfaces are investigated. The wettability are analyzed from different aspects, including contact angle, centroid ordinates, and self-diffusion coefficient. Simulation results show that the presence of surfactants can modify the wetting characteristics of crude oil within shale reservoirs. Notably, a reversal of wettability has been observed for oil-wet kaolinite surfaces. As for kerogen surfaces, it is found that an optimal surfactant concentration exists, beyond which the further addition of surfactant may not enhance the efficiency of wettability alteration

    The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2

    Full text link
    On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 Ā±\pm 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 Ɨ\times 1.95 km) Ā±\pm10%\%, respectively, and the direction of the +zz axis is estimated to be (250Ā±\pm5āˆ˜^\circ, 63Ā±\pm5āˆ˜^\circ) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.Comment: 21 pages, 3 figures, 1 tabl

    Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies

    Get PDF
    Solid polymer electrolytes (SPEs) possess comprehensive advantages such as high flexibility, low interfacial resistance with the electrodes, excellent film-forming ability, and low price, however, their applications in solid-state batteries are mainly hindered by the insufficient ionic conductivity especially below the melting temperatures, etc. To improve the ion conduction capability and other properties, a variety of modification strategies have been exploited. In this review article, we scrutinize the structure characteristics and the ion transfer behaviors of the SPEs (and their composites) and then disclose the ion conduction mechanisms. The ion transport involves the ion hopping and the polymer segmental motion, and the improvement in the ionic conductivity is mainly attributed to the increase of the concentration and mobility of the charge carriers and the construction of fast-ion pathways. Furthermore, the recent advances on the modification strategies of the SPEs to enhance the ion conduction from copolymer structure design to lithium salt exploitation, additive engineering, and electrolyte micromorphology adjustion are summarized. This article intends to give a comprehensive, systemic, and profound understanding of the ion conduction and enhancement mechanisms of the SPEs for their viable applications in solid-state batteries with high safety and energy density

    Molecular and biochemical investigations of the anti-fatigue effects of tea polyphenols and fruit extracts of Lycium ruthenicum Murr. on mice with exercise-induced fatigue

    Get PDF
    Background: The molecular mechanisms regulating the therapeutic effects of plant-based ingredients on the exercise-induced fatigue (EIF) remain unclear. The therapeutic effects of both tea polyphenols (TP) and fruit extracts of Lycium ruthenicum (LR) on mouse model of EIF were investigated.Methods: The variations in the fatigue-related biochemical factors, i.e., lactate dehydrogenase (LDH), superoxide dismutase (SOD), tumor necrosis factor-Ī± (TNF-Ī±), interleukin-1Ī² (IL-1Ī²), interleukin-2 (IL-2), and interleukin-6 (IL-6), in mouse models of EIF treated with TP and LR were determined. The microRNAs involved in the therapeutic effects of TP and LR on the treatment of mice with EIF were identified using the next-generation sequencing technology.Results: Our results revealed that both TP and LR showed evident anti-inflammatory effect and reduced oxidative stress. In comparison with the control groups, the contents of LDH, TNF-Ī±, IL-6, IL-1Ī², and IL-2 were significantly decreased and the contents of SOD were significantly increased in the experimental groups treated with either TP or LR. A total of 23 microRNAs (21 upregulated and 2 downregulated) identified for the first time by the high-throughput RNA sequencing were involved in the molecular response to EIF in mice treated with TP and LR. The regulatory functions of these microRNAs in the pathogenesis of EIF in mice were further explored based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses with a total of over 20,000ā€“30,000 target genes annotated and 44 metabolic pathways enriched in the experimental groups based on GO and KEGG databases, respectively.Conclusion: Our study revealed the therapeutic effects of TP and LR and identified the microRNAs involved in the molecular mechanisms regulating the EIF in mice, providing strong experimental evidence to support further agricultural development of LR as well as the investigations and applications of TP and LR in the treatment of EIF in humans, including the professional athletes

    Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients

    Get PDF
    A caseā€“control study was conducted to examine the association between two single nucleotide polymorphisms (SNPs) in exon 2 of the bone morphogenetic protein-2 gene (BMP-2) and ossification of the posterior longitudinal ligament (OPLL), and to investigate whether SNPs of the Ser37Ala (T/G) and the Ser87Ser (A/G) in the BMP-2 gene are associated with genetic susceptibility to OPLL and its severity in Chinese subjects. The Ser87Ser (A/G) SNP has been implicated in bone mineral density (BMD) and increases the risk of OA in women. The Ser37Ala (T/G) SNP is associated with BMD and the rate of bone loss in osteoporosis and osteoporosis fractures. A total of 57 OPLL patients and 135 non-OPLL controls were studied. Radiographs of the cervical spine were analyzed to determine the presence and the severity of OPLL. The association of two SNPs with the occurrence and the extent of OPLL were statistically evaluated. There was a significant association between the Ser37Ala (T/G) polymorphism and the occurrence of OPLL in the cervical spine. However, no significant association was found between the Ser37Ala (T/G) polymorphism and the more number of ossified cervical vertebrae in OPLL patients. There was a significant association between the Ser87Ser (A/G) polymorphism and the more number of ossified cervical vertebrae in OPLL patients. However, there was no statistical difference between the Ser87Ser (A/G) SNP and the occurrence of OPLL in the cervical spine. In addition, the Ser87Ser (A/G) polymorphism in male patients and in female patients showed no statistical difference between cases and controls. The present results demonstrate that BMP-2 Gene is not only a factor associated with the occurrence of OPLL, but also a factor related to more extensive OPLL. The ā€œGā€ allele in the Ser37Ala (T/G) polymorphism is associated with the occurrence of OPLL, but not more extensive OPLL in the cervical spine. The ā€œGā€ allele in the Ser87Ser (A/G) polymorphism promotes the extent of OPLL, whereas the ā€œAā€ allele in the Ser87Ser (A/G) polymorphism restricts ectopic ossification in the cervical spine at least in Chinese subjects

    Space advanced technology demonstration satellite

    Get PDF
    The Space Advanced Technology demonstration satellite (SATech-01), a mission for low-cost space science and new technology experiments, organized by Chinese Academy of Sciences (CAS), was successfully launched into a Sun-synchronous orbit at an altitude of similar to 500 km on July 27, 2022, from the Jiuquan Satellite Launch Centre. Serving as an experimental platform for space science exploration and the demonstration of advanced common technologies in orbit, SATech-01 is equipped with 16 experimental payloads, including the solar upper transition region imager (SUTRI), the lobster eye imager for astronomy (LEIA), the high energy burst searcher (HEBS), and a High Precision Magnetic Field Measurement System based on a CPT Magnetometer (CPT). It also incorporates an imager with freeform optics, an integrated thermal imaging sensor, and a multi-functional integrated imager, etc. This paper provides an overview of SATech-01, including a technical description of the satellite and its scientific payloads, along with their on-orbit performance

    Design of A Readout System for a Low Leakage Soil Water-Content Sensor

    No full text
    Soil water-content sensors based on the measurement of soil impedance are widely used for the detection of rain-fall induced slope failure and other agriculture applications. In principle, low-leakage sensors can measure soil water content down to 4%, but they require readout systems capable of generating soil excitation signals at frequencies ranging from 1KHz to 1MHz. However, existing commercial products do not cover this frequency range. To solve this problem, a new readout system is proposed in this thesis. By using sinusoidal excitation, implemented by a pulse-width- modulated driver, and synchronous detection, the readout system achieves less than 1% measurement error from 1KHz to 1MHz.Electrical Engineering | Microelectronic

    Effects of Ti Containing Cu-Based Alloy on Sintering Mechanism, Element Diffusion Behavior and Physical Properties of Glass-Ceramic Bond for Cubic Boron Nitride Abrasive Tool Materials

    No full text
    Ti containing Cu-based (TC) alloy reinforced glass-ceramic bond was fabricated for cubic boron nitride (CBN) abrasive tool materials, and its crystal composition, phase transformation, sintering activation energy, microstructure, element diffusion mathematical model, physical properties, and the bonding mechanism between the TC alloy reinforced glass-ceramic bond and the CBN grains were systematically investigated. The results showed that the structure, composition and sintering behavior of glass-ceramic were influenced by TC alloy adding. The generated TiO2 affected obviously the precipitation of β-quartz solid solution Li2Al2Si3O10, thus improving the relative crystallinity, mechanical strength and thermal properties. By establishing the mathematical model for element diffusion, the element diffusion coefficients of Ti and Cu were 7.82 and 6.98 × 10−11 cm2/s, respectively, which indicated that Ti diffused better than Cu in glass-ceramic. Thus, Ti4+ formed a strong Ti–N chemical bond on the CBN surface, which contributed to improving the wettability and bonding strength between CBN and glass-ceramic bond. After adding TC alloy, the physical properties of the composite were optimized. The porosity, bulk density, flexural strength, Rockwell hardness, CTE, and thermal conductivity of the composites were 5.8%, 3.16 g/cm3, 175 MPa, 90.5 HRC, 3.74 × 10−6 °C−1, and 5.84 W/(m·k), respectively
    • ā€¦
    corecore