84 research outputs found

    Evaluation of PDE4 inhibition for COPD

    Get PDF
    Targeting type 4 phosphodiesterase (PDE4) for treatment of COPD has multilevel benefits to patients by reducing inflammation, relieving bronchoconstriction, and improving pulmonary circulation. The isoenzyme-specific narrow spectrum PDE4 inhibitors such as cilomilast and roflumilast may have limited clinical efficacy in managing severe and very severe COPD. Development of dual therapy by combining PDE4 inhibition with Ca2+ channel antagonism may introduce an effective novel armory for physicians to manage patients with severe COPD

    Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer

    Get PDF
    Ulcerative colitis (UC) is a chronic disease, in which the lining of the colon becomes inflamed and develops ulcers leading to abdominal pain, diarrhea, and rectal bleeding. The extent of these symptoms depends on disease severity. The protein arginine deiminase (PAD) family of enzymes converts peptidyl-Arginine to peptidyl-Citrulline through citrullination. PADs are dysregulated, with abnormal citrullination in many diseases, including UC and colorectal cancer (CRC). We have developed the small molecule, pan-PAD inhibitor, Chlor-amidine (Cl-amidine), with multiple goals, including treating UC and preventing CRC. Building off our recent results showing that: 1) Cl-amidine suppresses colitis in vivo in a dextran sulfate sodium (DSS) mouse model; and 2) Cl-amidine induces microRNA (miR)-16 in vitro causing cell cycle arrest, we tested the hypothesis that Cl-amidine can prevent tumorigenesis and that miR-16 induction, by Cl-amidine, may be involved in vivo. Consistent with our hypothesis, we present evidence that Cl-amidine, delivered in the drinking water, prevents colon tumorigenesis in our mouse model of colitis-associated CRC where mice are given carcinogenic azoxymethane (AOM), followed by multiple cycles of 2% DSS to induce colitis. To begin identifying mechanisms, we examined the effects of Cl-amidine on miR-16. Results show miR-16 suppression during the colitis-to-cancer sequence in colon epithelial cells, which was rescued by drinking Cl-amidine. Likewise, Ki67 and cellular proliferation targets of miR-16 (Cyclins D1 and E1) were suppressed by Cl-amidine. The decrease in cell proliferation markers and increase in tumor suppressor miRNA expression potentially define a mechanism of how Cl-amidine is suppressing tumorigenesis in vivo

    The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest.

    Get PDF
    Protein Arginine Deiminases (PADs) catalyze the post-translational conversion of peptidyl-Arginine to peptidyl-Citrulline in a calcium-dependent, irreversible reaction. Evidence is emerging that PADs play a role in carcinogenesis. To determine the cancer-associated functional implications of PADs, we designed a small molecule PAD inhibitor (called Chor-amidine or Cl-amidine), and tested the impact of this drug on the cell cycle. Data derived from experiments in colon cancer cells indicate that Cl-amidine causes a G1 arrest, and that this was p53-dependent. In a separate set of experiments, we found that Cl-amidine caused a significant increase in microRNA-16 (miRNA-16), and that this increase was also p53-dependent. Because miRNA-16 is a putative tumor suppressor miRNA, and others have found that miRNA-16 suppresses proliferation, we hypothesized that the p53-dependent G1 arrest associated with PAD inhibition was, in turn, dependent on miRNA-16 expression. Results are consistent with this hypothesis. As well, we found the G1 arrest is at least in part due to the ability of Cl-amidine-mediated expression of miRNA-16 to suppress its\u27 G1-associated targets: cyclins D1, D2, D3, E1, and cdk6. Our study sheds light into the mechanisms by which PAD inhibition can protect against or treat colon cancer

    PL-010 Chronic mild stress improves glucose homeostasis via myonectin-mediated suppression of sympathetic activity in high-fat diet-fed mice

    Get PDF
    Objective Recent studies suggest that chronic stress exposure can ameliorate the progression of diet-induced prediabetic disease, by inhibiting an increase in weight gain, caloric intake and efficiency and insulin resistance. To determine the underlying mechanism by which chronic stress improves the progression of type 2 diabetes, we developed a model of chronic mild stress in high-fat diet(HFD)-fed mice which are resistant to obesity and exhibit a healthy-like metabolic phenotype. Methods High-fat diet (HFD): 45% kcal derived from fat (Research Diets, Inc.).Mice experienced one stressor during the day and a different stressor during the night. Stressors were randomly chosen from the following list : cage tilt on a 45° angle for 1 to 16 h; food deprivation for 12 to 16 h; white noise for 1 to 16 h; strobe light illumination for 1 to 16 h; crowded housing; light cycle (continuous illumination) for 24 to 36 h; dark cycle (continuous darkness) for 24 to 36 h; water deprivation for 12 to 16 h; damp bedding (200 ml water poured into sawdust bedding) for 12 to 16 h.Recombinant adeno-associated virus (AAV): AAV9 vectors encoding myonectin under the control of the ubiquitous CMV promoter (AAV9-CMV-Vip) or an equal dose of the AAV9-CMV-null vector were delivered to C57BL/6 mice by the tail vein. Mice were deprived of food for 16 h and then subjected to test 7 days after AAV injection. Results Chronic stress improved glucose intolerance and sympathetic overactivity in HFD-fed mice. Chronic stress attenuated epinephrine(EPI)-stimulated glycerol release into blood in vivo and accelerated glycerol release from white adipose tissue followed by in vitro incubation with EPI. Chronic stress reduced plasma triglyceride but increased the levels of plasma insulin and myonectin. We further found that adeno-associated virus 9 (AAV9)-mediated myonectin overexpression improved glucose homeostasis and reduced epinephrine sensitivity. Myonectin overexpression reduced plasma norepinephrine, EPI and leptin levels, and increased insulin sensitivity in brown and white adipose tissue. Intense sympathetic activity with high-intensity running inhibited myonectin expression in skeletal muscle, whereas medium and low-intensity exercise running increased myonectin expression. Conclusions These findings suggest that chronic mild stress can improve glucose homeostasis via myonectin-mediated suppression of sympathetic activity in high-fat diet-fed mice

    American ginseng suppresses inflammation and DNA damage associated with mouse colitis

    Get PDF
    Ulcerative colitis (UC) is a dynamic, idiopathic, chronic inflammatory condition associated with a high colon cancer risk. American ginseng has antioxidant properties and targets many of the players in inflammation. The aim of this study was to test whether American ginseng extract prevents and treats colitis. Colitis in mice was induced by the presence of 1% dextran sulfate sodium (DSS) in the drinking water or by 1% oxazolone rectally. American ginseng extract was mixed in the chow at levels consistent with that currently consumed by humans as a supplement (75 p.p.m., equivalent to 58 mg daily). To test prevention of colitis, American ginseng extract was given prior to colitis induction. To test treatment of colitis, American ginseng extract was given after the onset of colitis. In vitro studies were performed to examine mechanisms. Results indicate that American ginseng extract not only prevents but it also treats colitis. Inducible nitric oxide synthase and cyclooxygenase-2 (markers of inflammation) and p53 (induced by inflammatory stress) are also downregulated by American ginseng. Mucosal and DNA damage associated with colitis is at least in part a result of an oxidative burst from overactive leukocytes. We therefore tested the hypothesis that American ginseng extract can inhibit leukocyte activation and subsequent epithelial cell DNA damage in vitro and in vivo. Results are consistent with this hypothesis. The use of American ginseng extract represents a novel therapeutic approach for the prevention and treatment of UC

    Co-Deletion of Chromosome 1p/19q and IDH1/2 Mutation in Glioma Subsets of Brain Tumors in Chinese Patients

    Get PDF
    OBJECTIVE: To characterize co-deletion of chromosome 1p/19q and IDH1/2 mutation in Chinese brain tumor patients and to assess their associations with clinical features. METHODS: In a series of 528 patients with gliomas, pathological and radiological materials were reviewed. Pathological constituents of tumor subsets, incidences of 1p/19q co-deletion and IDH1/2 mutation in gliomas by regions and sides in the brain were analyzed. RESULTS: Overall, 1p and 19q was detected in 339 patients by FISH method while the sequence of IDH1/2 was determined in 280 patients. Gliomas of frontal, temporal and insular origin had significantly different pathological constituents of tumor subsets (P<0.001). Gliomas of frontal origin had significantly higher incidence of 1p/19q co-deletion (50.4%) and IDH1/2 mutation (73.5%) than those of non-frontal origin (27.0% and 48.5%, respectively) (P<0.001), while gliomas of temporal origin had significantly lower incidence of 1p/19q co-deletion (23.9%) and IDH1/2 mutation (41.7%) than those of non-temporal origin (39.9% and 63.2%, respectively) (P = 0.013 and P = 0.003, respectively). Subgroup analysis confirmed these findings in oligoastrocytic and oligodendroglial tumors, respectively. Although the difference of 1p/19q co-deletion was not statistically significant in temporal oligodendroglial tumors, the trend was marginally significant (P = 0.082). However, gliomas from different sides of the brain did not show significant different pathological constituents, incidences of 1p/19q co-deletion or IDH1/2 mutation. CONCLUSION: Preferential distribution of pathological subsets, 1p/19q co-deletion and IDH1/2 mutation were confirmed in some brain regions in Chinese glioma patients, implying their distinctive tumor genesis and predictive value for prognosis
    corecore