855 research outputs found
Structures and growth pathways of AunCln+3-(n≤7) cluster anions
Gold chloride clusters play an important role in catalysis and materials chemistry. Due to the diversity of their species and isomers, there is still a dearth of structural studies at the molecular level. In this work, anions of AunCln+3- and AunCln+5- (n = 2–4) clusters were obtained by laser desorption/ionization mass spectrometry (LDI MS), and the most stable isomers of AunCln+3- were determined after a thorough search and optimization at the TPSSh/aug-cc-pVTZ/ECP60MDF level. The results indicate that all isomers with the lowest energy have a planar zigzag skeleton. In each species, there is one Au(III) atom at the edge connected with four Cl atoms, which sets it from the other Au(I) atoms. Four growth pathways for AunCln+3- (n = 2–7) clusters are proposed (labelled R1, R2, R3 and R4). They are all associated with an aurophilic contact and are exothermic. The binding energies tend to stabilize at ~ −41 kcal/mol when the size of the cluster increases in all pathways. The pathway R1, which connects all the most stable isomers of the respective clusters, is characterized by cluster growth due to aurophilic interactions at the terminal atom of Au(I) in the zigzag chains. In the pathway of R4 involving Au-Au bonding in its initial structures (n ≤ 3), the distance between intermediate gold atoms grows with cluster size, ultimately resulting in the transfer of the intermediate Au-Au bonding into aurophilic interaction. The size effect on the structure and aurophilic interactions of these clusters will be better understood based on these discoveries, potentially providing new insights into the active but elusive chemical species involved in the corresponding catalytic reactions or nanoparticle synthesis processes
DD correlations as a sensitive probe for thermalization in high-energy nuclear collisions
We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons
Accurate Characterization of Binding Kinetics and Allosteric Mechanisms for the HSP90 Chaperone Inhibitors Using AI-Augmented Integrative Biophysical Studies
The binding kinetics of drugs to their targets are gradually being recognized as a crucial indicator of the efficacy of drugs in vivo, leading to the development of various computational methods for predicting the binding kinetics in recent years. However, compared with the prediction of binding affinity, the underlying structure and dynamic determinants of binding kinetics are more complicated. Efficient and accurate methods for predicting binding kinetics are still lacking. In this study, quantitative structure–kinetics relationship (QSKR) models were developed using 132 inhibitors targeting the ATP binding domain of heat shock protein 90α (HSP90α) to predict the dissociation rate constant (koff), enabling a direct assessment of the drug–target residence time. These models demonstrated good predictive performance, where hydrophobic and hydrogen bond interactions significantly influence the koff prediction. In subsequent applications, our models were used to assist in the discovery of new inhibitors for the N-terminal domain of HSP90α (N-HSP90α), demonstrating predictive capabilities on an experimental validation set with a new scaffold. In X-ray crystallography experiments, the loop-middle conformation of apo N-HSP90α was observed for the first time (previously, the loop-middle conformation had only been observed in holo-N-HSP90α structures). Interestingly, we observed different conformations of apo N-HSP90α simultaneously in an asymmetric unit, which was also observed in a holo-N-HSP90α structure, suggesting an equilibrium of conformations between different states in solution, which could be one of the determinants affecting the binding kinetics of the ligand. Different ligands can undergo conformational selection or alter the equilibrium of conformations, inducing conformational rearrangements and resulting in different effects on binding kinetics. We then used molecular dynamics simulations to describe conformational changes of apo N-HSP90α in different conformational states. In summary, the study of the binding kinetics and molecular mechanisms of N-HSP90α provides valuable information for the development of more targeted therapeutic approaches
D-Dbar Correlations as a sensitive probe for thermalization in high-energy nuclear collisions
We propose to measure azimuthal correlations of heavy-flavor hadrons to
address the status of thermalization at the partonic stage of light quarks and
gluons in high-energy nuclear collisions. In particular, we show that hadronic
interactions at the late stage cannot significantly disturb the initial
back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the
complete absence of these initial correlations does indicate frequent
interactions of heavy-flavor quarks and also light partons in the partonic
stage, which are essential for the early thermalization of light partons.Comment: 5 pages, 4 figures. Version accepted for publication in Phys.Lett.
Spectrally Dependent CLARREO Infrared Spectrometer Calibration Requirement for Climate Change Detection
Detecting climate trends of atmospheric temperature, moisture, cloud, and surface temperature requires accurately calibrated satellite instruments such as the Climate Absolute Radiance and Reflectivity Observatory (CLARREO). Wielicki et al. have studied the CLARREO measurement requirements for achieving climate change accuracy goals in orbit. Our study further quantifies the spectrally dependent IR instrument calibration requirement for detecting trends of atmospheric temperature and moisture profiles. The temperature, water vapor, and surface skin temperature variability and the associated correlation time are derived using Modern Era Retrospective-Analysis for Research and Applications (MERRA) and European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. The results are further validated using climate model simulation results. With the derived natural variability as the reference, the calibration requirement is established by carrying out a simulation study for CLARREO observations of various atmospheric states under all-sky. We derive a 0.04 K (k=2, or 95% confidence) radiometric calibration requirement baseline using a spectral fingerprinting method. We also demonstrate that the requirement is spectrally dependent and some spectral regions can be relaxed due to the hyperspectral nature of the CLARREO instrument. We further discuss relaxing the requirement to 0.06 K (k=2) based on the uncertainties associated with the temperature and water vapor natural variability and relatively small delay in time-to-detect for trends relative to the baseline case. The methodology used in this study can be extended to other parameters (such as clouds and CO2) and other instrument configurations
Letter of Intent: Jinping Neutrino Experiment
Jinping Neutrino Experiment (Jinping) is proposed to significantly improve
measurements on solar neutrinos and geoneutrinos in China Jinping Laboratory -
a lab with a number of unparalleled features, thickest overburden, lowest
reactor neutrino background, etc., which identify it as the world-best
low-energy neutrino laboratory. The proposed experiment will have target mass
of 4 kilotons of liquid scintillator or water-based liquid scintillator, with a
fiducial mass of 2 kilotons for neutrino-electron scattering events and 3
kilotons for inverse-beta interaction events. A number of initial sensitivities
studies have been carried out, including on the transition phase for the solar
neutrinos oscillation from the vacuum to the matter effect, the discovery of
solar neutrinos from the carbon-nitrogen-oxygen (CNO) cycle, the resolution of
the high and low metallicity hypotheses, and the unambiguous separation on U
and Th cascade decays from the dominant crustal anti-electron neutrinos in
China.Comment: Proposal for the Jinping Neutrino Experimen
The spectral dimension of longwave feedback in the CMIP3 and CMIP5 experiments
Radiative feedback is normally discussed in terms of the change of broadband flux. Yet it has an intrinsic dimension of spectrum. A set of longwave (LW) spectral radiative kernels (SRKs) is constructed and validated in a similar way as the broadband radiative kernel. The LW broadband feedback derived using this SRK are consistent with those from the broadband radiative kernels. As an application, the SRK is applied to 12 general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 3 and 12 GCMs from the Coupled Model Intercomparison Project Phase 5 simulations to derive the spectrally resolved Planck, lapse rate, and LW water vapor feedback. The spectral details of the Planck feedback from different GCMs are essentially the same, but the lapse rate and LW water vapor feedback do reveal spectrally dependent difference among GCMs. Spatial distributions of the feedback at different spectral regions are also discussed. The spectral feedback analysis provides us another dimension to understand and evaluate the modeled radiative feedback. Key Points Spectral radiative kernel is developed and validated to get spectral feedback Lapse rate and water vapor feedback have different spectral dependence Spectral kernel provides new information not available from broadband studiesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110043/1/grl52334.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110043/2/grl52334-sup-0001-readme.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110043/3/grl52334-sup-0002-Auxiliary_material.pd
J/psi transport in QGP and Pt distribution at SPS and RHIC
Combining the hydrodynamic equations for the QGP evolution and the transport
equation for the primordially produced in the QGP, we investigate the
transverse momentum distribution as well as its suppression in the
=17.3A GeV Pb-Pb collisions at SPS and =200A GeV Au-Au
collisions at RHIC. The two sets of equations are connected by the
anomalous suppression induced by its inelastic scattering with gluons in the
QGP. The calculated centrality dependence of suppression and average
transverse momentum square agree well with the SPS data. From the comparison
with the coalescence model where charm quark is fully thermalized, our
calculated elliptical flow of the primordially produced is much
smaller. This may be helpful to differentiate the production
mechanisms in relativistic heavy ion collisions.Comment: 6 pages, 4 figure
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
- …