93 research outputs found

    Goal-Guided Transformer-Enabled Reinforcement Learning for Efficient Autonomous Navigation

    Full text link
    Despite some successful applications of goal-driven navigation, existing deep reinforcement learning (DRL)-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-the-art (SOTA) baselines. The demonstration video (https://www.youtube.com/watch?v=aqJCHcsj4w0) and the source code (https://github.com/OscarHuangWind/DRL-Transformer-SimtoReal-Navigation) are also provided

    Coherence-protected Quantum Gate by Continuous Dynamical Decoupling in Diamond

    Full text link
    To implement reliable quantum information processing, quantum gates have to be protected together with the qubits from decoherence. Here we demonstrate experimentally on nitrogen-vacancy system that by using continuous wave dynamical decoupling method, not only the coherence time is prolonged by about 20 times, but also the quantum gates is protected for the duration of controlling time. This protocol shares the merits of retaining the superiority of prolonging the coherence time and at the same time easily combining with quantum logic tasks. It is expected to be useful in task where duration of quantum controlling exceeds far beyond the dephasing time.Comment: 5 pages, 4 figure

    S-antigen specific T helper type 1 response is present in Behcet’s disease

    Get PDF
    PURPOSE: To investigate the frequency and phenotypic and functional characteristics of S-antigen (S-Ag) specific T cells in patients with Behcet's disease (BD). METHODS: Blood was taken from 23 active BD patients, 12 inactive BD patients, and 14 healthy controls. The clinical features of the patients were summarized. T cell response against 40 mixed S-Ag peptides was identified by interferon gamma (IFN-gamma) enzyme-linked immunospot assay (ELISPOT). CD69 and CD45RO were used to characterize the phenotype of S-Ag specific T cells. The functional property of S-Ag specific T cells was investigated by measuring the production of cytokines. RESULTS: Response to the mixed S-Ag peptides was found in 56.5% and 25% of active and inactive BD patients, respectively. The responsiveness to S-Ag peptides was unrelated to the clinical features of the patients. About 65.8% of IFN-gamma(+) CD4(+) T cells in active BD patients expressed CD69 and CD45RO concomitantly. S-Ag peptides significantly induced a production of IFN-gamma and tumor necrosis factor (TNF)-alpha but not interleukin (IL)-2, IL-4, and IL-17 by peripheral blood mononuclear cells (PBMCs) in active BD patients with a response to S-Ag. CONCLUSIONS: S-Ag specific T cells are present in certain active BD patients, and most of them are activated memory CD4(+) T cells. These T cells may be involved in the pathogenesis of BD via producing Th1-dominant cytokine
    • …
    corecore