8 research outputs found

    Optimal O

    Get PDF
    A number of acceleration schemes for speeding up the time-consuming bilateral filter have been proposed in the literature. Among these techniques, the histogram-based bilateral filter trades the flexibility for achieving O(1) computational complexity using box spatial kernel. A recent study shows that this technique can be leveraged for O(1) bilateral filter with arbitrary spatial and range kernels by linearly combining the results of multiple-box bilateral filters. However, this method requires many box bilateral filters to obtain sufficient accuracy when approximating the bilateral filter with a large spatial kernel. In this paper, we propose approximating arbitrary spatial kernel using a fixed number of boxes. It turns out that the multiple-box spatial kernel can be applied in many O(1) acceleration schemes in addition to the histogram-based one. Experiments on the application to the histogram-based acceleration are presented in this paper. Results show that the proposed method has better accuracy in approximating the bilateral filter with Gaussian spatial kernel, compared with the previous histogram-based methods. Furthermore, the performance of the proposed histogram-based bilateral filter is robust with respect to the parameters of the filter kernel

    Vision Sensor-Based Road Detection for Field Robot Navigation

    No full text
    Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA)-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF) framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art

    Visual Saliency Based on Scale-Space Analysis in the Frequency Domain

    No full text
    corecore