46 research outputs found

    Single-cell RNA sequencing reveals in vivo osteoimmunology interactions between the immune and skeletal systems

    Get PDF
    BackgroundWhile osteoimmunology interactions between the immune and skeletal systems are known to play an important role in osteoblast development, differentiation and bone metabolism related disease like osteoporosis, such interactions in either bone microenvironment or peripheral circulation in vivo at the single-cell resolution have not yet been characterized.MethodsWe explored the osteoimmunology communications between immune cells and osteoblastic lineage cells (OBCs) by performing CellphoneDB and CellChat analyses with single-cell RNA sequencing (scRNA-seq) data from human femoral head. We also explored the osteoimmunology effects of immune cells in peripheral circulation on skeletal phenotypes. We used a scRNA-seq dataset of peripheral blood monocytes (PBMs) to perform deconvolution analysis. Then weighted gene co-expression network analysis (WGCNA) was used to identify monocyte subtype-specific subnetworks. We next used cell-specific network (CSN) and the least absolute shrinkage and selection operator (LASSO) to analyze the correlation of a gene subnetwork identified by WGCNA with bone mineral density (BMD).ResultsWe constructed immune cell and OBC communication networks and further identified L-R genes, such as JAG1 and NOTCH1/2, with ossification related functions. We also found a Mono4 related subnetwork that may relate to BMD variation in both older males and postmenopausal female subjects.ConclusionsThis is the first study to identify numerous ligand-receptor pairs that likely mediate signals between immune cells and osteoblastic lineage cells. This establishes a foundation to reveal advanced and in-depth osteoimmunology interactions to better understand the relationship between local bone microenvironment and immune cells in peripheral blood and the impact on bone phenotypes

    EPSTI1 Is Involved in IL-28A-Mediated Inhibition of HCV Infection

    No full text
    It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-α synergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity

    Fine Mapping of a Grain Shape Gene from a Rice Landrace Longliheinuo-Dwarf (Oryza sativa L. ssp. japonica)

    No full text
    Identification of grain shape genes can facilitate breeding of rice cultivars with optimal grain shape and appearance quality. In this study, we selected two rice germplasms, namely Longliheinuo-dwarf (LH) and N643, with different grain shape, to construct a genetic population for quantitative trait locus (QTL) analysis. A major QTL (qGS7), controlling the ratio of grain length to grain width, was mapped on the chromosome 7 in a BC1F4 line. By high-resolution linkage analysis, qGS7 was delimited to a 52.8 kb region including eight predicted genes. Through sequence alignment and real-time PCR expression analysis of these ORFs, ORF3 (LOC_Os07g42410) was selected as the candidate gene for further analysis. Single nucleotide polymorphisms (SNP) diversity analysis of ORF3 revealed that a single nucleotide deletion in the 7th exon resulted in a frameshift in parent LH and the parent in which a premature stop codon was identified. It was a rare mutation that caused grain shape difference. Real-time PCR analyses showed that the expression characteristics of ORF3 was in accordance with the development of spikelets. Of the 18 agronomic traits investigation in qGS7 near isogenic lines (NILs) showed that qGS7 not only changed grain shape but also affected plant height, panicle curvature, panicle length, the length of second leaf from the top, and chalkiness

    In Situ

    No full text

    Liquid Crystal Enabled Dynamic Nanodevices

    No full text
    Inspired by the anisotropic molecular shape and tunable alignment of liquid crystals (LCs), investigations on hybrid nanodevices which combine LCs with plasmonic metasurfaces have received great attention recently. Since LCs possess unique electro-optical properties, developing novel dynamic optical components by incorporating nematic LCs with nanostructures offers a variety of practical applications. Owing to the large birefringence of LCs, the optical properties of metamaterials can be electrically or optically modulated over a wide range. In this review article, we show different elegant designs of metasurface based nanodevices integrated into LCs and explore the tuning factors of transmittance/extinction/scattering spectra. Moreover, we review and classify substantial tunable devices enabled by LC-plasmonic interactions. These dynamically tunable optoelectronic nanodevices and components are of extreme importance, since they can enable a significant range of applications, including ultra-fast switching, modulating, sensing, imaging, and waveguiding. By integrating LCs with two dimensional metasurfaces, one can manipulate electromagnetic waves at the nanoscale with dramatically reduced sizes. Owing to their special electro-optical properties, recent efforts have demonstrated that more accurate manipulation of LC-displays can be engineered by precisely controlling the alignment of LCs inside small channels. In particular, device performance can be significantly improved by optimizing geometries and the surrounding environmental parameters

    Fast Batch Quantification of the Cellulose-Cellulose Adhesion Using a Cantilevered Microgripper

    No full text
    corecore