153 research outputs found
Synthesis, Analysis, and Testing of BiOBr-Bi 2
In photocatalysis, the recombination of electron-hole pairs is generally regarded as one of its most serious drawbacks. The synthesis of various composites with heterojunction structures has increasingly shed light on preventing this recombination. In this work, a BiOBr-Bi2WO6 photocatalytic heterojunction semiconductor was synthesized by the facile hydrothermal method and applied in the photocatalytic degradation process. It was determined that both reaction time and temperature significantly affected the crystal structure and morphologies of the photocatalysts. BiOBr (50 at%)-Bi2WO6 composites were prepared under optimum synthesis conditions (120°C for 6 h) and by theoretically analyzing the DRS results, it was determined that they possessed the suitable band gap (2.61 eV) to be stimulated by visible-light irradiation. The photocatalytic activities of the as-prepared photocatalysts were evaluated by the degradation of Rhodamine B (RhB) under visible-light irradiation. The experimental conditions, including initial concentration, pH, and catalyst dosage, were explored and the photocatalysts in this system were proven stable enough to be reused for several runs. Moreover, the interpreted mechanism of the heterojunction enhancement effect proved that the synthesis of a heterojunction structure provided an effective method to decrease the recombination rate of the electron-hole pairs, thereby improving the photocatalytic activity
Thermal conductivity of monolayer MoS2, MoSe2, and WS2: Interplay of mass effect, interatomic bonding and anharmonicity
Phonons are essential for understanding the thermal properties in monolayer
transition metal dichalcogenides, which limit their thermal performance for
potential applications. We investigate the lattice dynamics and thermodynamic
properties of MoS2, MoSe2, and WS2 by first principles calculations. The
obtained phonon frequencies and thermal conductivities agree well with the
measurements. Our results show that the thermal conductivity of MoS2 is highest
among the three materials due to its much lower average atomic mass. We also
discuss the competition between mass effect, interatomic bonding and anharmonic
vibrations in determining the thermal conductivity of WS2. Strong covalent W-S
bonding and low anharmonicity in WS2 are found to be crucial in understanding
its much higher thermal conductivity compared to MoSe2.Comment: 19 pages, 7 figure
Effect of the Steam Activation Thermal Treatment on the Microstructure of Continuous TiO 2
The continuous TiO2 fibers have been synthesized by the sol-gel method using the polymer of titanate as the precursor solution. The as-synthesized samples were characterized using XRD, SEM, and HR-TEM analysis methods. The grain growth kinetics was primarily investigated. The results demonstrated that the average diameters of the fibers were in the range of 20–30 μm, the crystal phase of the synthesized TiO2 fiber was transformed from anasate to rutile, and the crystal size became bigger with increasing the temperature using steam activation. The growth exponent and the constant of growth rate of the rutile crystal phase at 500°C were 4 and 2.55×106 nm/h, respectively. The activation energies of crystalline growth during 500°C~700°C and 700°C~800°C were 38.62 kJ/mol and 143.91 kJ/mol, respectively
Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection
Photocatalytic degradation is a promising alternative to traditional wastewater treatment methods. Recently developed visible light-responsive photocatalyst, BiOBr, has attracted extensive attentions. Hereby, a detailed investigation of application of BiOBr to bacterial inactivation and organic pollutants degradation is reported. Hydrothermal catalyst was prepared using template-free method. While, for solvothermal synthesis, CTAB was used as a template. Results indicate a higher photocatalytic activity by the solvothermally prepared catalyst. Solvothermally prepared BiOBr exhibited high photocatalytic activities in both water detoxification and disinfection
Ag/AgCl Loaded Bi 2
Hierarchical flower-like Bi2WO6 was successfully synthesized by facile hydrothermal method at low pH. And Ag/AgCl was loaded by photoreduction on its surface. As-prepared photocatalysts were characterized by various techniques. Bi2WO6 was successfully synthesized at a size of 2-3 μm. Depositing Ag/AgCl did not destroy the crystal structure, and both Ag+ and metallic Ag0 were found. The band gap of the composite was 2.57 eV, which indicates that visible light could be the activating irradiation. In the photocatalytic activity test, the composite with 10 wt% Ag/AgCl boasted the highest removal efficiency (almost 100%) in 45 min. The significant enhancement can be attributed to the surface plasmon resonance (SPR) effect and the establishment of heterostructures between Ag/AgCl and Bi2WO6. A possible mechanism of photocatalytic oxidation in the presence of Ag/AgCl-Bi2WO6 was proposed. This work sheds light on the potential applications of plasmonic metals in photocatalysis to enhance their activities
Indium-Containing Visible-Light-Driven (VLD) Photocatalysts for Solar Energy Conversion and Environment Remediation
Indium-containing visible-light-driven (VLD) photocatalysts including indium-containing oxides, indium-containing sulfides, indium-containing hydroxides, and other categories have attracted more attention due to their high catalytic activities for oxidation and reduction ability under visible light irradiation. This chapter will therefore concentrate on indium-containing nano-structured materials that demonstrate useful activity under solar excitation in fields concerned with the elimination of pollutants, partial oxidation and the vaporization of chemical compounds, water splitting, and CO2 reduction processes. The indium-containing photocatalysts can extend the light absorption range and improve the photocatalytic activity by doping, heterogeneous structures, load promoter, and morphology regulation. A number of synthetic and modification techniques for adjusting the band structure to harvest visible light and improve the charge separation in photocatalysis are discussed. In this chapter, preparation, properties, and potential applications of indium-containing nano-structured materials used as photocatalysis will be systematically summarized, which is beneficial for understanding the mechanism and developing the potential applications
Overexpression of luxS
LuxS/AI-2 quorum sensing (QS) system involves the production of cell signaling molecules via luxS-based autoinducer-2 (AI-2). LuxS has been reported to plays critical roles in regulating various behaviors of bacteria. AI-2 is a byproduct of the catabolism of S-adenosylhomocysteine (SAH) performed by the LuxS and Pfs enzymes. In our previous study, the function of LuxS in AI-2 production was verified in Streptococcus suis (SS). Decreased levels of SS biofilm formation and host-cell adherence as well as an inability to produce AI-2 were observed in bacteria having a luxS mutant gene. In this study, the level of AI-2 activity exhibits a growth-phase dependence with a maximum in late exponential culture in SS. An SS strain that overexpressed luxS was constructed to comprehensively understand the function of AI-2. Overexpressed luxS was not able to increase the level of pfs expression and produce additional AI-2, and the bacteria were slower growing and produced only slightly more biofilm than the wild type. Thus, AI-2 production is not correlated with luxS transcription. luxS expression is constitutive, but the transcription of pfs is perhaps correlated with AI-2 production in SS
- …