6,996 research outputs found

    One-Dimensional Transition Metal-Benzene Sandwich Polymers: Possible Ideal Conductors for Spin Transport

    Full text link
    We investigate the electronic and magnetic properties of the proposed one-dimensional transition metal (TM=Sc, Ti, V, Cr, and Mn)-benzene (Bz) sandwich polymers by means of density functional calculations. [V(Bz)]∞_{\infty} is found to be a quasi-half-metallic ferromagnet and half-metallic ferromagnetism is predicted for [Mn(Bz)]∞_{\infty}. Moreover, we show that stretching the [TM(Bz)]∞_{\infty} polymers could have dramatic effects on their electronic and magnetic properties. The elongated [V(Bz)]∞_{\infty} displays half-metallic behavior, and [Mn(Bz)]∞_{\infty} stretched to a certain degree becomes an antiferromagnetic insulator. The possibilities to stabilize the ferromagnetic order in [V(Bz)]∞_{\infty} and [Mn(Bz)]∞_{\infty} polymers at finite temperature are discussed. We suggest that the hexagonal bundles composed by these polymers might display intrachain ferromagnetic order at finite temperature by introducing interchain exchange coupling

    Electronic, Mechanical, and Piezoelectric Properties of ZnO Nanowires

    Full text link
    Hexagonal [0001] nonpassivated ZnO nanowires are studied with density functional calculations. The band gap and Young's modulus in nanowires which are larger than those in bulk ZnO increase along with the decrease of the radius of nanowires. We find ZnO nanowires have larger effective piezoelectric constant than bulk ZnO due to their free boundary. In addition, the effective piezoelectric constant in small ZnO nanowires doesn't depend monotonously on the radius due to two competitive effects: elongation of the nanowires and increase of the ratio of surface atoms

    Linear scaling calculation of band edge states and doped semiconductors

    Full text link
    Linear scaling methods provide total energy, but no energy levels and canonical wavefuctions. From the density matrix computed through the density matrix purification methods, we propose an order-N (O(N)) method for calculating both the energies and wavefuctions of band edge states, which are important for optical properties and chemical reactions. In addition, we also develop an O(N) algorithm to deal with doped semiconductors based on the O(N) method for band edge states calculation. We illustrate the O(N) behavior of the new method by applying it to boron nitride (BN) nanotubes and BN nanotubes with an adsorbed hydrogen atom. The band gap of various BN nanotubes are investigated systematicly and the acceptor levels of BN nanotubes with an isolated adsorbed H atom are computed. Our methods are simple, robust, and especially suited for the application in self-consistent field electronic structure theory

    Linear scaling calculation of maximally-localized Wannier functions with atomic basis set

    Full text link
    We have developed a linear scaling algorithm for calculating maximally-localized Wannier functions (MLWFs) using atomic orbital basis. An O(N) ground state calculation is carried out to get the density matrix (DM). Through a projection of the DM onto atomic orbitals and a subsequent O(N) orthogonalization, we obtain initial orthogonal localized orbitals. These orbitals can be maximally localized in linear scaling by simple Jacobi sweeps. Our O(N) method is validated by applying it to water molecule and wurtzite ZnO. The linear scaling behavior of the new method is demonstrated by computing the MLWFs of boron nitride nanotubes.Comment: J. Chem. Phys. in press (2006

    Determination of the Local Standard of Rest using the LSS-GAC DR1

    Full text link
    We re-estimate the peculiar velocity of the Sun with respect to the local standard of rest using a sample of local stars within 600 pc of the Sun, selected from the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). The sample consists of 94332 FGK main-sequence stars with well-determined radial velocities and atmospheric parameters. To derive the LSR, two independent analyses are applied to the data. Firstly, we determine the solar motion by comparing the observed velocity distribution to that generated with the analytic formulism of Schonrich & Binney that has been demonstrated to show excellent agreement with rigorous torus-based dynamics modelling by Binney & McMillan. Secondly, we propose that cold populations of thin disc stars, selected by applying an orbital eccentricity cut, can be directly used to determine the LSR without the need of asymmetric drift corrections. Both approaches yield consistent results of solar motion in the direction of Galactic rotation, V_sun, that are much higher than the standard value adopted hitherto, derived from Stromgren's equation. The newly deduced values of V_sun are 1-2 km/s smaller than the more recent estimates derived from the Geneva-Copenhagen Survey sample of stars in the solar neighbourhood (within 100 pc). We attribute the small difference to the presence of several well-known moving groups in the GCS sample that, fortunately, hardly affect the LSS-GAC sample. The newly derived radial and vertical components of the solar motion agree well with the previous studies. In addition, for all components of the solar motion, the values yielded by stars of different spectral types in the LSS-GAC sample are consistent with each other, suggesting that the local disk is well relaxed and that the LSR reported in the current work is robust. Our final recommended LSR is, (U,V,W)_sun = (7.01+/-0.20, 10.13+/-0.12, 4.95+/-0.09) km/s.Comment: MNRAS accepted, 13 pages, 11 figures, 7 table
    • …
    corecore