2,482 research outputs found

    Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands

    Full text link
    Using the "standard pair" technique of paring stars of almost nil and high extinction but otherwise of almost identical stellar parameters from the SDSS, and combing the SDSS, GALEX, 2MASS and WISE photometry ranging from the far UV to the mid-IR, we have measured dust reddening in the FUV-NUV, NUV-u, u-g, g-r, r-i, i-z, z-J, J-H, H-Ks, Ks-W1 and W1-W2 colors for thousands of Galactic stars. The measurements, together with the E(B-V) values given by Schlegel et al. (1998), allow us to derive the observed, model-free reddening coefficients for those colors. The results are compared with previous measurements and the predictions of a variety of Galactic reddening laws. We find that 1) The dust reddening map of Schlegel et al. (1998) over-estimates E(B-V) by about 14 per cent, consistent with the recent work of Schlafly et al. (2010) and Schlafly & Finkbeiner (2011); 2) All the new reddening coefficients, except those for NUV-u and u-g, prefer the R(V) = 3.1 Fitzpatrick reddening law rather than the R(V) = 3.1 CCM and O'Donnell (O'Donnell 1994) reddening laws. Using the Ks-band extinction coefficient predicted by the R(V) = 3.1 Fitzpatrick law and the observed reddening coefficients, we have deduced new extinction coefficients for the FUV, NUV, u, g, r, i, z, J, H, W1 and W2 passbands. We recommend that the new reddening and extinction coefficients should be used in the future and an update of the Fitzpatrick reddening law in the UV is probably necessary. We stress however that the FUV- and NUV-band coefficients should be used with caution given their relatively large measurement uncertainties. Finally, potential applications of the "standard pair" technique with the LAMOST Galactic surveys are discussed.Comment: 13 pages, 9 figures, accepted to MNRA

    Sensing as a service: A cloud computing system for mobile phone sensing

    Get PDF
    Sensors on (or attached to) mobile phones can enable attractive sensing applications in different domains such as environmental monitoring, social networking, healthcare, etc. We introduce a new concept, Sensing-as-a-Service (S2aaS), i.e., providing sensing services using mobile phones via a cloud computing system. An S2aaS cloud should meet the following requirements: 1) It must be able to support various mobile phone sensing applications on different smartphone platforms. 2) It must be energy-efficient. 3) It must have effective incentive mechanisms that can be used to attract mobile users to participate in sensing activities. In this paper, we identify unique challenges of designing and implementing an S2aaS cloud, review existing systems and methods, present viable solutions, and point out future research directions

    Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection

    Full text link
    Machine learning based solutions have been successfully employed for automatic detection of malware in Android applications. However, machine learning models are known to lack robustness against inputs crafted by an adversary. So far, the adversarial examples can only deceive Android malware detectors that rely on syntactic features, and the perturbations can only be implemented by simply modifying Android manifest. While recent Android malware detectors rely more on semantic features from Dalvik bytecode rather than manifest, existing attacking/defending methods are no longer effective. In this paper, we introduce a new highly-effective attack that generates adversarial examples of Android malware and evades being detected by the current models. To this end, we propose a method of applying optimal perturbations onto Android APK using a substitute model. Based on the transferability concept, the perturbations that successfully deceive the substitute model are likely to deceive the original models as well. We develop an automated tool to generate the adversarial examples without human intervention to apply the attacks. In contrast to existing works, the adversarial examples crafted by our method can also deceive recent machine learning based detectors that rely on semantic features such as control-flow-graph. The perturbations can also be implemented directly onto APK's Dalvik bytecode rather than Android manifest to evade from recent detectors. We evaluated the proposed manipulation methods for adversarial examples by using the same datasets that Drebin and MaMadroid (5879 malware samples) used. Our results show that, the malware detection rates decreased from 96% to 1% in MaMaDroid, and from 97% to 1% in Drebin, with just a small distortion generated by our adversarial examples manipulation method.Comment: 15 pages, 11 figure

    Empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs and giants based on interferometric data

    Full text link
    We present empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs of luminosity classes IV and V and for giants of luminosity classes II and III, based on a collection from the literature of about two hundred nearby stars with direct effective temperature measurements of better than 2.5 per cent. The calibrations are valid for an effective temperature range 3,100 - 10,000 K for dwarfs of spectral types M5 to A0 and 3,100 - 5,700 K for giants of spectral types K5 to G5. A total of twenty-one colours for dwarfs and eighteen colours for giants of bands of four photometric systems, i.e. the Johnson (UBVRJIJJHKUBVR_{\rm J}I_{\rm J}JHK), the Cousins (RCICR_{\rm C}I_{\rm C}), the Sloan Digital Sky Survey (SDSS, grgr) and the Two Micron All Sky Survey (2MASS, JHKsJHK_{\rm s}), have been calibrated. Restricted by the metallicity range of the current sample, the calibrations are mainly applicable for disk stars ([Fe/H]1.0\,\gtrsim\,-1.0). The normalized percentage residuals of the calibrations are typically 2.0 and 1.5 per cent for dwarfs and giants, respectively. Some systematic discrepancies at various levels are found between the current scales and those available in the literature (e.g. those based on the infrared flux method IRFM or spectroscopy). Based on the current calibrations, we have re-determined the colours of the Sun. We have also investigated the systematic errors in effective temperatures yielded by the current on-going large scale low- to intermediate-resolution stellar spectroscopic surveys. We show that the calibration of colour (gKsg-K_{\rm s}) presented in the current work provides an invaluable tool for the estimation of stellar effective temperature for those on-going or upcoming surveys.Comment: 28 pages, 19 figures, 8 tables, accepted for publication in MNRA

    1-(4-tert-Butyl­benz­yl)-3-phenyl-1H-pyrazole-5-carboxylic acid

    Get PDF
    In the title compound, C21H22N2O2, the mean plane of the pyrazole ring makes dihedral angles of 18.80 (12) and 77.13 (5)°, respectively, with the mean planes of the phenyl and tert-butyl­benzyl rings. The carboxylate group is inclined at 8.51 (14)° with respect to the pyrazole ring. The crystal structure displays inter­molecular O—H⋯O hydrogen bonding, generating centrosymmetric dimers

    Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable Ligand

    Get PDF
    A free bis-cinchona alkaloid derivative ligand was prepared by a simple synthetic manipulation. With ligand/olefin mole ratio of 1%, the asymmetric dihydroxylation reactions of six olefins proceeded smoothly to give the chiral vicinal diols in high chemical yields and optical yields. The ligand itself could be recovered quantitatively by a simple operation and reused five times without loss of enantioselectivity
    corecore