2,978 research outputs found
High-temperature protective coatings for C/SiC composites
AbstractCarbon fiber-reinforced silicon carbide (C/SiC) composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073K or higher in water vapor
Electrical Control of Magnetization in Charge-ordered Multiferroic LuFe2O4
LuFe2O4 exhibits multiferroicity due to charge order on a frustrated
triangular lattice. We find that the magnetization of LuFe2O4 in the
multiferroic state can be electrically controlled by applying voltage pulses.
Depending on with or without magnetic fields, the magnetization can be
electrically switched up or down. We have excluded thermal heating effect and
attributed this electrical control of magnetization to an intrinsic
magnetoelectric coupling in response to the electrical breakdown of charge
ordering. Our findings open up a new route toward electrical control of
magnetization.Comment: 14 pages, 5 figure
Primordial black holes and scalar-induced gravitational waves from the perturbations on the inflaton potential in peak theory
A perturbation on the background inflaton potential can lead inflation into
the ultraslow-roll stage and can thus remarkably enhance the power spectrum
of the primordial curvature perturbation on small
scales. Such an enhanced will result in primordial black
holes (PBHs), contributing a significant fraction of dark matter, and will
simultaneously generate sizable scalar-induced gravitational waves (SIGWs) as a
secondorder effect. In this work, we calculate the PBH abundances and SIGW spectra in peak theory. We obtain the
PBHs with desirable abundances in one or two typical mass windows at
, , and , respectively.
At the same time, the relevant SIGWs are expected to be observed by the
next-generation gravitational wave detectors, without spoiling the current
constraint. Especially, the SIGW associated with the PBH of can
also interpret the potential isotropic stochastic gravitational wave background
from the NANOGrav 12.5-year dataset.Comment: 22 pages, 6 figure
The Analysis of the Properties of Bus Network Topology in Beijing Basing on Complex Networks
The transport network structure plays a crucial role in transport dynamics. To better understand the property of the bus network in big city and reasonably configure the bus lines and transfers, this paper seeks to take the bus network of Beijing as an example and mainly use space L and space P to analyze the network topology properties. The approach is applied to all the bus lines in Beijing which includes 722 lines and 5421 bus station. In the first phase of the approach, space L is used. The results show that the bus network of Beijing is a scale-free network and the degree of more than 99 percent of nodes is lower than 10. The results also show that the network is an assortative network with 46 communities. In a second phase, space P is used to analyze the property of transfer. The results show that the average transfer time of Beijing bus network which is 1.88 and 99.8 percent of arbitrary two pair nodes is reachable within 4 transfers
Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs
Optimal power allocation for orthogonal frequency division multiplexing
(OFDM) wiretap channels with Gaussian channel inputs has already been studied
in some previous works from an information theoretical viewpoint. However,
these results are not sufficient for practical system design. One reason is
that discrete channel inputs, such as quadrature amplitude modulation (QAM)
signals, instead of Gaussian channel inputs, are deployed in current practical
wireless systems to maintain moderate peak transmission power and receiver
complexity. In this paper, we investigate the power allocation and artificial
noise design for OFDM wiretap channels with discrete channel inputs. We first
prove that the secrecy rate function for discrete channel inputs is nonconcave
with respect to the transmission power. To resolve the corresponding nonconvex
secrecy rate maximization problem, we develop a low-complexity power allocation
algorithm, which yields a duality gap diminishing in the order of
O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that
independent frequency-domain artificial noise cannot improve the secrecy rate
of single-antenna wiretap channels. Towards this end, we propose a novel
time-domain artificial noise design which exploits temporal degrees of freedom
provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and
boost the secrecy rate even with a single antenna at the transmitter}.
Numerical results are provided to illustrate the performance of the proposed
design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless
Communications, Jan. 201
- β¦