14,664 research outputs found

    Quantum transfer matrix method for one-dimensional disordered electronic systems

    Full text link
    We develop a novel quantum transfer matrix method to study thermodynamic properties of one-dimensional (1D) disordered electronic systems. It is shown that the partition function can be expressed as a product of 2Γ—22\times2 local transfer matrices. We demonstrate this method by applying it to the 1D disordered Anderson model. Thermodynamic quantities of this model are calculated and discussed.Comment: 7 pages, 10 figure

    Differential Actions of Ethanol and Trichloroethanol at Sites in the M3 and M4 Domains of the NMDA Receptor GluN2A (NR2A) Subunit

    Get PDF
    Background and purpose:  Alcohol produces its behavioural effects in part due to inhibition of N-methyl-d-aspartate (NMDA) receptors in the CNS. Previous studies have identified amino acid residues in membrane-associated domains 3 (M3) and 4 (M4) of the NMDA receptor that influence ethanol sensitivity. In addition, in other alcohol-sensitive ion channels, sedative-hypnotic agents have in some cases been shown to act at sites distinct from the sites of ethanol action. In this study, we compared the influence of mutations at these sites on sensitivity to ethanol and trichloroethanol, a sedative-hypnotic agent that is a structural analogue of ethanol. Experimental approach:  We constructed panels of mutants at ethanol-sensitive positions in the GluN2A (NR2A) NMDA receptor subunit and transiently expressed these mutants in human embryonic kidney 293 cells. We used whole-cell patch-clamp recording to assess the actions of ethanol and trichloroethanol in these mutant NMDA receptors. Key results:  Ethanol sensitivity of mutants at GluN2A(Ala825) was not correlated with any physicochemical measures tested. Trichloroethanol sensitivity was altered in two of three ethanol-insensitive mutant GluN2A subunits: GluN2A(Phe637Trp) in M3 and GluN2A(Ala825Trp) in M4, but not GluN2A(Met823Trp). Trichloroethanol sensitivity decreased with increasing molecular volume at Phe637 or increasing hydrophobicity at Ala825 and was correlated with ethanol sensitivity at both sites. Conclusions and implications:  Evidence obtained to date is consistent with a role of GluN2A(Ala825) as a modulatory site for ethanol and trichloroethanol sensitivity, but not as a binding site. Trichloroethanol appears to inhibit the NMDA receptor in a manner similar, but not identical to, that of ethanol

    Difference of optical conductivity between one- and two-dimensional doped nickelates

    Full text link
    We study the optical conductivity in doped nickelates, and find the dramatic difference of the spectrum in the gap (Ο‰\omega\alt4 eV) between one- (1D) and two-dimensional (2D) nickelates. The difference is shown to be caused by the dependence of hopping integral on dimensionality. The theoretical results explain consistently the experimental data in 1D and 2D nickelates, Y2βˆ’x_{2-x}Cax_xBaNiO5_5 and La2βˆ’x_{2-x}Srx_xNiO4_4, respectively. The relation between the spectrum in the X-ray aborption experiments and the optical conductivity in La2βˆ’x_{2-x}Srx_xNiO4_4 is discussed.Comment: RevTeX, 4 pages, 4 figure

    Dust-to-gas ratio, XCOX_{\rm CO} factor and CO-dark gas in the Galactic anticentre: an observational study

    Full text link
    We investigate the correlation between extinction and H~{\sc i} and CO emission at intermediate and high Galactic latitudes (|b|>10\degr) within the footprint of the Xuyi Schmidt Telescope Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In Paper I (Chen et al. 2014), we present a three-dimensional dust extinction map within the footprint of XSTPS-GAC, covering a sky area of over 6,000\,deg2^2 at a spatial angular resolution of 6\,arcmin. In the current work, the map is combined with data from gas tracers, including H~{\sc i} data from the Galactic Arecibo L-band Feed Array H~{\sc i} survey and CO data from the Planck mission, to constrain the values of dust-to-gas ratio DGR=AV/N(H)DGR=A_V/N({\rm H}) and CO-to-H2\rm H_2 conversion factor XCO=N(H2)/WCOX_{\rm CO}=N({\rm H_2})/W_{\rm CO} for the entire GAC footprint excluding the Galactic plane, as well as for selected star-forming regions (such as the Orion, Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemisphere. For the whole GAC footprint, we find DGR=(4.15Β±0.01)Γ—10βˆ’22DGR=(4.15\pm0.01) \times 10^{-22}\,mag cm2\rm mag\,cm^{2} and XCO=(1.72Β±0.03)Γ—1020X_{\rm CO}=(1.72 \pm 0.03) \times 10^{20}\,cmβˆ’2 (K km sβˆ’1)βˆ’1\rm cm^{-2}\,(K\,km\,s^{-1})^{-1}. We have also investigated the distribution of "CO-dark" gas (DG) within the footprint of GAC and found a linear correlation between the DG column density and the VV-band extinction: N(DG)≃2.2Γ—1021(AVβˆ’AVc) cmβˆ’2N({\rm DG}) \simeq 2.2 \times 10^{21} (A_V - A^{c}_{V})\,\rm cm^{-2}. The mass fraction of DG is found to be fDG∼0.55f_{\rm DG}\sim 0.55 toward the Galactic anticentre, which is respectively about 23 and 124 per cent of the atomic and CO-traced molecular gas in the same region. This result is consistent with the theoretical work of Papadopoulos et al. but much larger than that expected in the H2\rm H_2 cloud models by Wolfire et al.Comment: 11 pages, 7 figures, accepted for publication in MNRA
    • …
    corecore