15,637 research outputs found

    Room-Temperature Ferrimagnet with Frustrated Antiferroelectricity: Promising Candidate Toward Multiple State Memory

    Full text link
    On the basis of first-principles calculations we show that the M-type hexaferrite BaFe12O19 exhibits frustrated antiferroelectricity associated with its trigonal bipyramidal Fe3+ sites. The ferroelectric (FE) state of BaFe12O19, reachable by applying an external electric field to the antiferroelectric (AFE) state, can be made stable at room temperature by appropriate element substitution or strain engineering. Thus M-type hexaferrite, as a new type of multiferoic with coexistence of antiferroelectricity and ferrimagnetism, provide a basis for studying the phenomenon of frustrated antiferroelectricity and realizing multiple state memory devices.Comment: supporting material available via email. arXiv admin note: text overlap with arXiv:1210.7116 by other author

    Evolution of Intermediate-Mass Black Hole X-Ray Binaries

    Full text link
    The majority of the ultraluminous X-ray sources (ULXs) in external galaxies are believed to be accreting black holes in binary systems; some of the black holes could be as massive as \sim 100-1000 \ms. We have performed evolution calculations for intermediate-mass black hole X-ray binaries, assuming they are formed in dense star clusters via tidal capture. The results are compared with those for stellar-mass black holes X-ray binaries. We find that these two types of black holes may have similar companion stars and binary orbits if observed as ULXs. However, intermediate-mass black holes seem to be favored in explaining the most luminous ULXs. We also discuss the possibilities of transient behavior and beamed emission in the evolution of these binary systems.Comment: 11 pages, 3 figures. Accepted for publication in ApJ

    Cooperative Effect of Electron Correlation and Spin-Orbit Coupling on the Electronic and Magnetic Properties of Ba2NaOsO6

    Full text link
    The electronic and magnetic properties of the cubic double perovskite Ba2NaOsO6 were examined by performing first-principles density functional theory calculations and analyzing spin-orbit coupled states of an Os7+ (d1) ion at an octahedral crystal field. The insulating behavior of Ba2NaOsO6 was shown to originate from a cooperative effect of electron correlation and spin-orbit coupling. This cooperative effect is responsible not only for the absence of orbital ordering in Ba2 NaOsO6 but also for a small magnetic moment and a weak magnetic anisotropy in Ba2NaOsO6

    Optimizing Hartree-Fock orbitals by the density-matrix renormalization group

    Full text link
    We have proposed a density-matrix renormalization group (DMRG) scheme to optimize the one-electron basis states of molecules. It improves significantly the accuracy and efficiency of the DMRG in the study of quantum chemistry or other many-fermion system with nonlocal interactions. For a water molecule, we find that the ground state energy obtained by the DMRG with only 61 optimized orbitals already reaches the accuracy of best quantum Monte Carlo calculation with 92 orbitals.Comment: published version, 4 pages, 4 figure

    Quantum transfer matrix method for one-dimensional disordered electronic systems

    Full text link
    We develop a novel quantum transfer matrix method to study thermodynamic properties of one-dimensional (1D) disordered electronic systems. It is shown that the partition function can be expressed as a product of 2×22\times2 local transfer matrices. We demonstrate this method by applying it to the 1D disordered Anderson model. Thermodynamic quantities of this model are calculated and discussed.Comment: 7 pages, 10 figure
    corecore