63 research outputs found

    The effect of chemotherapy combined with recombination mutant human tumor necrosis factor on advanced cancer

    Get PDF
    BACKGROUND: Past studies suggested that tumor necrosis factor (TNF) assisted anti-tumor treatment and intensified the sensitivity of chemotherapy. However its clinical application has been curbed because of its low purity, high dosage, and strong toxicity. This research, through perspective random clinical control experiment, observed the therapeutic effect of the treatment of late malignant tumor through the injection of recombinant mutant human tumor necrosis factor (rmhTNF) combined with general chemotherapy and its adverse reactions. METHODS: 105 patients with advanced malignant tumor were randomly divided into trial group, 69 patients, and control group, 36 patients. Injection of rmhTNF 4 × 10(6)u/m(2 )was given to the trial group, from the 1(st )to 7(th )days, the 11(th )to 17(th )days combined with chemotherapy course. The chemotherapy plan was as follows: CAP for patients with the NSCLC; FAM for patients with gastric cancer; FC for patients with colorectal cancer. One treatment cycle lasted for 21 days and two cycles were scheduled. The control group was given only the same chemotherapy as the trial group. RESULTS: In the trial group there was 1 CR case and 12 PR cases, and the response rate is 13/69 (18.84%); in the control group 1 PR case, the response rate 1/36 (2.78%). The response rate of the trial group was significantly higher than that of the control group (P = 0.022). The response rate for NSCLC in the trial group was 8/17 (47.06%), and 1/6 (16.67%) in the control group. The response rates for gastric cancer and colorectal cancer in the trial groups also were higher than those of the control groups. After the treatment the KPS is 89.00 ± 9.92 in the trial group, and 84.17 ± 8.84 in the control group, with a significant difference between the two groups (P = 0.028). The adverse reactions of rmhTNF injection included: pain in the injection area, chill, hardening and swelling and redness in the injection area, fever, ostealgia and myosalgia, and cold-like symptoms. All these adverse reactions were mild and bearable. CONCLUSIONS: The administration of rmhTNF injection in combination with general chemotherapy is an effective and secure means in treating advanced malignant tumor

    A square root information filter for multi-GNSS real-time precise clock estimation

    Get PDF
    Real-time satellite orbit and clock estimations are the prerequisite for Global Navigation Satellite System (GNSS) real-time precise positioning services. To meet the high-rate update requirement of satellite clock corrections, the computational efficiency is a key factor and a challenge due to the rapid development of multi-GNSS constellations. The Square Root Information Filter (SRIF) is widely used in real-time GNSS data processing thanks to its high numerical stability and computational efficiency. In real-time clock estimation, the outlier detection and elimination are critical to guarantee the precision and stability of the product but could be time-consuming. In this study, we developed a new quality control procedure including the three standard steps: i.e., detection, identification, and adaption, for real-time data processing of huge GNSS networks. Effort is made to improve the computational efficiency by optimizing the algorithm to provide only the essential information required in the processing, so that it can be applied in real-time and high-rate estimation of satellite clocks. The processing procedure is implemented in the PANDA (Positioning and Navigation Data Analyst) software package and evaluated in the operational generation of real-time GNSS orbit and clock products. We demonstrated that the new algorithm can efficiently eliminate outliers, and a clock precision of 0.06 ns, 0.24 ns, 0.06 ns, and 0.11 ns can be achieved for the GPS, GLONASS, Galileo, and BDS-2 IGSO/MEO satellites, respectively. The computation time per epoch is about 2 to 3 s depending on the number of existing outliers. Overall, the algorithm can satisfy the IGS real-time clock estimation in terms of both the computational efficiency and product quality

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Prognostic effect of albumin-to-alkaline phosphatase ratio on patients with hepatocellular carcinoma: a systematic review and meta-analysis

    No full text
    Abstract The prognostic value of albumin-to-alkaline phosphatase ratio (AAPR) in patients with hepatocellular carcinoma (HCC) remains controversial. This meta-analysis aims to evaluate the prognostic role of AAPR in patients with HCC. The databases of Web of Science, Embase, Cochrane Library and PubMed were comprehensively searched from inception to April 25, 2022. Pooled hazard ratio (HR) and 95% confidence interval (CI) were calculated with Stata 16.0 software for the assessment of the relationship between AAPR and overall survival (OS) as well as recurrence-free survival (RFS) in patients with HCC. A total of 2634 patients from 12 cohorts were included in this meta-analysis. The pooled results showed that lower AAPR predicted poorer OS (HR 2.02, 95% CI 1.78–2.30). Similarly, pooled results demonstrated that lower AAPR also predicted poorer RFS (HR 1.88, 95% CI 1.37–2.57). The heterogeneity for RFS by multivariate analytic results and the publication bias for OS existed, however, the subgroup analysis, meta-regression analysis as well as adjustment using trim-and-fill analysis confirmed an association between AAPR and OS as well as RFS. This meta-analysis proves that lower AAPR in patients with HCC predicted inferior survival outcomes, and AAPR might be a promising indicator for the prognosis of HCC

    Study on Mix Proportion Optimization and Microstructure of Coal-Based Solid Waste (CSW) Backfill Material Based on Multi-Objective Decision-Making Model

    No full text
    The preparation of underground-backfill material from CSW can be used for large-scale disposal of solid waste. The proportion of backfill material plays an important role in transportation and backfilling effect, and the mix-proportion optimization of backfill material is essentially a multi-factor and multi-objective optimization problem. In this paper, to obtain the mix proportion of backfill materials with optimal comprehensive-evaluation indexes, and suitable for the engineering application, the fluidity and strength of backfill material, mainly composed of coal gangue(CG), fly ash (FA), flue gas desulfurization gypsum (FGD gypsum), and gasification coarse slag (GCS), were tested by single-factor transformation method, and the effects of various solid wastes on the slump-flow, bleeding rate and early strength of backfill material were analyzed. The optimal mix proportion of CSW with the slump-flow, bleeding rate, and 3-day and 7-day strengths as the evaluation indicators is FA: GCS: FGD gypsum: CG = 25%:25%:25%:25%, according to the multi-objective decision model. Furthermore, the comprehensive evaluation index that meets the requirements of mine backfilling is obtained by changing the ordinary portland cement (OPC) content, that is, the optimal OPC content is 10% of the total solid waste, and the mass concentration is 78%. Finally, the pore structure, micromorphology, and composition of the backfill material with the optimal mix proportion were studied by Mercury Intrusion Porosimetry (MIP), X-ray Diffraction (XRD), and Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS). The research results provide a good reference for the field application of CSW for underground backfilling

    Study on Characteristics of Compression Deformation and Post-Peak Stress Rebound for Solid Waste Cemented Body

    No full text
    Most of the previous studies focused on the mechanical characteristics before the stress peak of solid waste cemented backfill, but in the compression process of a solid waste cemented body, the phenomenon of post-peak stress rebound often occurs. Through the uniaxial compression experiment of a solid waste cemented body composed of coal gangue, fly ash, desulfurization gypsum, gasification slag, and furnace bottom slag, this paper analyzed the compression deformation characteristics of a solid waste cemented body with different mix proportions before and after the stress peak, established the stress–strain curve model of rebound stress in the rising and descending section after the stress peak, and revealed the reasons for the rebound stress and secondary unloading of the cemented body after the stress peak. The results showed that the maximum rebound stress accounts for 40%–80% of the compressive strength, and the changes in the two are positively correlated. The stress–strain curve model is a cubic function in the post-peak stress rising section and a quadratic rational function in the descending section. With the increase in the maximum compressive strength of the cemented body, its maximum rebound stress also increases, but its corresponding compressive strain generally shows a downward trend. There is a positive correlation between the rebound stress increment and strain increment of the cemented body. The change in the supporting structure and the evolution of the failure form of the cemented body before and after the maximum rebound stress indicate that the compression failure of the residual supporting structure caused by the main crack is the main reason for the rebound of the stress after the peak value of the cemented body to the complete unloading

    Mix proportion and microscopic characterization of coal-based solid waste backfill material based on response surface methodology and multi-objective decision-making

    No full text
    Abstract The mix proportion of multi-source coal-based solid waste (CSW) for underground backfilling affects transportation and support performance of backfill materials, and even the backfilling cost. In this study, the optimal mix proportion of desulfurization gypsum (DG), furnace bottom slag (FBS) and gasification fine slag (GFS) is determined by the Response Surface Methodology–Box Behnken Design (RSM-BBD). Then the fluidity, bleeding rate, 3-day strength, 7-day strength and preparation cost are evaluation indicators, the optimal mix proportion of backfill materials is determined by the multi-objective decision-making method (MDM). Finally, the microstructure of the backfill material with optimal mix proportion was studied by TGA, MIP, SEM–EDS and XRD. The results show that the mix proportion of CSW with the optimal comprehensive index is coal gangue (CG): coal fly ash (CFA): DG: FBS: GFS = 1:1.5:0.2:0.1:0.1, the mass concentration is 78%, and ordinary Portland cement (OPC)/CSW = 7.5%. The weight loss phenomenon of the backfill material with the optimal mix proportion occurs continuously during the heating process, mainly due to the evaporation of crystal water, structural water and hydroxyl water. There are dense narrow-necked pores in the backfill material, and the pore connectivity is poor. There is no hydration reaction occurs between CSW particles, and the strength increase of the backfill material mainly depends on the hydration reaction of cement. In ettringite, part of Al2O3 is replaced by SiO2, and part of CaSO4 is replaced by CaCO3. This study provides a reference for the engineering application of underground backfilling with multi-source CSW

    Characterization and phylogenetic analysis of the complete mitochondrial genome of Neurothemis fulvia (Odonata: Anisoptera: Libellulidae)

    No full text
    Neurothemis fulvia is a dragonfly of wet forests and usually perches on fallen logs and shrubs. In this study, we sequenced and analyzed the complete mitochondrial genome (mitogenome) of N. fulvia. This mitogenome was 15,459 bp long and encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA unit genes (rRNAs). The nucleotide composition of the mitogenome was biased toward A and T, with 70.5% of A + T content (A 38.8%, T 31.7%, C 16.6%, and G 12.9%). Gene order was conserved and identical to most other previously sequenced Libellulidae dragonflies. Most PCGs of N. fulvia have the conventional start codons ATN (six ATG, three ATT, and two ATC), with the exception of cox1 and nad1 (TTG). Except for four PCGs (cox1, cox2, cox3, and nad5) end with the incomplete stop codon T––, all other PCGs terminated with the stop codon TAA or TAG. Phylogenetic analysis showed that N. fulvia got together with Tramea virginia with high support value. Libellulidae had a close relationship with Corduliidae, the relationships ((Hydrobasileus + Brachythemis) + (Orthetrum + (Acisoma + (Neurothemis + Tramea)))) were supported in Libellulidae

    Study on the effect of multi-source solid waste on the performance of its backfill slurry

    No full text
    The preparation of slurry from multi-source solid waste for underground backfill adds a way out for solid waste disposal, which is beneficial to reduce environmental impact. In this paper, the effects of gangue, fly ash, gasification coarse slag and desulfurization gypsum on the fluidity, early strength, thermal stability and other properties of the backfill slurry were studied by fluidity test, strength test, Thermo-Gravimetric Analysis (TGA), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). The results show that: (1) When G/SW (mass ratio of gangue to solid waste) < 23%, gangue is beneficial to improve the fluidity and early strength of backfill slurry; with the increase of fly ash content, the fluidity of backfill slurry decreases, but its early strength increases; gasification coarse slag has a negative effect on the fluidity of backfill slurry, but it is beneficial to its early strength when GCS/SW (mass ratio of gasification coarse slag to solid waste) < 33%; desulfurization gypsum can improve the fluidity of the backfill slurry, but it is not conducive to the increase of early strength. (2) The compression failure mode of the backfill is mainly divided into the crack-intensive failure, the single main crack penetration splitting failure, and the double main crack conjugate splitting failure. (3) Endothermic dehydration reactions of adsorbed water and crystallization water generally occur at 55–65 °C and 110–130 °C for backfill with different solid waste contents; As the temperature continues to increase, the backfill material undergoes a slow exothermic decomposition reaction; Increasing the content of gangue, fly ash and gasification coarse slag and reducing the content of desulfurized gypsum can make the backfill less weight loss at high temperature and better thermal stability. (4) The main mineral phases in the backfill material are gypsum and quartz, and there are also a small amount of acicular and hexagonal hydration products thaumasite. After high temperature, the thaumasite is dehydrated and decomposed. The research results are helpful to deeply understand the performance of multi-source solid waste for underground backfilling

    Intervention using a novel biodegradable hollow stent containing polylactic acid-polyprolactone-polyethylene glycol complexes against lacrimal duct obstruction disease.

    No full text
    Lacrimal duct obstruction disease (LDOD) is a common ophthalmologic disease. Stent implantation surgery is one of the most effective therapies. In this study, we intended to find out the satisfactory biodegradable stents containing poly-L-lactic acid-polycaprolactone-polyethylene glycol (PLLA- PCL- PEG) complexes for therapeutic application in LDOD. Stents made of PLLA- PCL- PEG complexes in various ratios, were prepared and used in vitro to determine stents with appropriate mechanical properties and shorter range of bio-degradation for study in vivo. Thirty-two rabbits were randomized into eight groups of four eyes each in advance for test in vivo. The selected stents were implanted into the left lacrimal ducts of 16 rabbits and silica gel stents as the control for the other 16 rabbits. At four points in time (1, 4, 10 and 16 weeks after the implantation), weight loss rate (WLR) of the stents was measured and analysed. To access the change of lacrimal duct, fluorescein excretion test, lacrimal duct endoscopy and histopathological testing were conducted. The stent containing PLLA: PCL6: 4+ 15%PEG was selected for study in vivo. Analysis of weight loss rate (WLR), fluorescein excretion test, lacrimal duct endoscopy and histopathological testing indicated that the selected stent was biodegradable and caused minimal stimulation and earlier tissue restoration in the lacrimal epithelium compared with the silica gel stent used as the control. The study results suggest that the PLLA: PCL6: 4+ 15% PEG stent is a satisfactory biodegradable stent as a promising alternative for therapeutic application in LDOD, which showed tissue compatibility, biodegradation and adequate mechanical intensity
    • …
    corecore