49 research outputs found

    Learning Appearance Primitives of Iris Images for Ethnic Classification

    Full text link
    Iris pattern is commonly regarded as a kind of phenotypic feature without relation to genes. In our previous work, we argued that iris texture is race related, and its genetic infor-mation is illustrated in coarse scale texture features, rather than preserved in the minute local features of state-of-the-art iris recognition algorithms. In this paper, we propose a novel ethnic classification method based on learning appearance primitives of iris images. So we not only confirm that iris texture is race related, but also try to find out which kinds of iris visual primitives make iris images look different between Asian and non-Asian. In our scheme, we learned a small finite vocabulary of micro-structures, which are called Iris-Textons, to represent visual primitives of iris images. Then we use Iris-Texton histogram to capture the difference be-tween iris textures. Finally iris images are grouped into two race categories, Asian and non-Asian, by Support VectorMa-chine(SVM). Based on the proposed method, we get a higher correct classification rate(CCR) of 91.02 % than our previous method on a database containing 2400 iris samples. Index Terms — Iris recognition, SVM, image process-ing, ethnic classification

    Corrigendum: Association between GSDMB gene polymorphism and cervical cancer in the Northeast Chinese Han population

    Get PDF
    Objective: The purpose of this study was to investigate the relationship between GSDMB gene polymorphism and genetic susceptibility to cervical cancer in the Han population in Northeast China. Methods: In this case–control study, the genotypes and alleles of rs8067378 in the GSDMB gene were analyzed by multiplex polymerase chain reaction (PCR) and next-generation sequencing methods in 482 cervical cancer (CC) patients, 775 cervical squamous intraepithelial lesion (SIL) patients, and 495 healthy women. The potential relationships between the SNP of the GSDMB gene with SIL and CC were analyzed by multivariate logistic regression analysis combined with 10,000 permutation tests. Results: In the comparison between the SIL group and the control group, the genotype and allele distribution frequencies of rs8067378 SNP of the GSDMB gene were statistically significant (p = 0.0493 and p = 0.0202, respectively). The allele distribution frequencies of rs8067378 were also statistically significant in the comparison between high-grade cervical squamous intraepithelial lesion (HSIL) and low-grade cervical squamous intraepithelial lesion (LSIL) groups with control group ( p = 0.0483 and p = 0.0330, respectively). Logistic regression analysis showed that after adjusting for age, the rs8067378 SNP of the GSDMB gene was significantly associated with the reduced risk of SIL under the dominant model (p = 0.0213, OR = 0.764, CI = 0.607–0.961) and the additive model (p = 0.0199, OR = 0.814, and CI = 0.684–0.968), and its mutant gene G may play a role in the progression of healthy people to LSIL and even HSIL as a protective factor. However, there was no significant association between cervical cancer and its subtypes with the control group (p > 0.05). After 10,000 permutations, there was still no correlation that has provided evidence for the accuracy of our study. Conclusion: The results of this study showed that rs8067378 single nucleotide polymorphism of the GSDMB gene may reduce the risk of SIL and protect the susceptibility to cervical precancerous lesions in the Northeast Chinese Han population, but it has no significant correlation with the progression of cervical cancer

    Counterfeit IRIS detection based on texture analysis

    No full text
    This paper addresses the issue of counterfeit iris detection, which is a liveness detection problem in biometrics. Fake iris mentioned here refers to iris wearing color contact lens with textures printed onto them. We propose three measures to detect fake iris: measuring iris edge sharpness, applying Iris-Texton feature for characterizing the visual primitives of iris textures and using selected features based on co-occurrence matrix (CM). Extensive testing is carried out on two datasets containing different types of contact lens with totally 640 fake iris images, which demonstrates that Iris-Texton and CM features are effective and robust in anticounterfeit iris. Detailed comparisons with two stateof-the-art methods are also presented, showing that the proposed iris edge sharpness measure acquires a comparable performance with these two methods, while Iris-Texton and CM features outperform the state-ofthe-art. 1

    Fabrication of pH-Sensitive Tetramycin Releasing Gel and Its Antibacterial Bioactivity against Ralstonia solanacearum

    No full text
    Ralstonia solanacearum (R. solanacearum)-induced bacterial wilt of the nightshade family causes a great loss in agricultural production annually. Although there has been some efficient pesticides against R. solanacearum, inaccurate pesticide releasing according to the onset time of bacterial wilt during the use of pesticides still hinders the disease management efficiency. Herein, on the basis of the soil pH change during R. solanacearum growth, and pH sensitivity of the Schiff base structure, a pH-sensitive oxidized alginate-based double-crosslinked gel was fabricated as a pesticide carrier. The gel was prepared by crosslinking oxidized sodium alginate (OSA) via adipic dihydrazide (ADH) and Ca2+. After loading tetramycin into the gel, it showed a pH-dependent pesticide releasing behavior and anti-bacterial activity against R. solanacearum. Further study also showed that the inhibition rate of the tetramycin-loaded gel was higher than that of industrial pesticide difenoconazole. This work aimed to reduce the difficulty of pesticide administration in the high incidence period of bacterial wilt and we believe it has a great application potential in nightshade production

    Overexpression of a pathogenesis-related gene NbHIN1 confers resistance to Tobacco Mosaic Virus in Nicotiana benthamiana by potentially activating the jasmonic acid signaling pathway

    No full text
    Harpin proteins secreted by plant-pathogenic gram-negative bacteria induce diverse plant defenses against different pathogens. Harpin-induced 1 (HIN1) gene highly induced in tobacco after application of Harpin protein is involved in a common plant defense pathway. However, the role of HIN1 against Tobacco mosaic virus (TMV) remains unknown. In this study, we functionally characterized the Nicotiana benthamiana HIN1 (NbHIN1) gene and generated the transgenic tobacco overexpressing the NbHIN1 gene. In a subcellular localization experiment, we found that NbHIN1 localized in the plasma membrane and cytosol. Overexpression of NbHIN1 did not lead to observed phenotype compared to wild type tobacco plant. However, the NbHIN1 overexpressing tobacco plant exhibited significantly enhanced resistance to TMV infection. Moreover, RNA-sequencing revealed the transcriptomic profiling of NbHIN1 overexpression and highlighted the primary effects on the genes in the processes related to biosynthesis of amino acids, plant-pathogen interaction and RNA transport. We also found that overexpression of NbHIN1 highly induced the expression of NbRAB11, suggesting that jasmonic acid signaling pathway might be involved in TMV resistance. Taken together, for the first time we demonstrated that overexpressing a pathogenesis-related gene NbHIN1 in N. benthamiana significantly enhances the TMV resistance, providing a potential mechanism that will enable us to engineer tobacco with improved TMV resistance in the future

    NS3 Protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana

    No full text
    Abstract Background Rice stripe virus (RSV) belongs to the genus Tenuivirus. It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). NS3 plays a significant role in viral infection, and NS3-transgenic plants manifest resistance to the virus. Methods The stability and availability of NS3 produced by transgenic Nicotiana benthamiana was investigated by northern blot analysis. The accumulation of virus was detected by western blot analysis. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) in NS3-transgenic N. benthamiana. Results When the host plants were inoculated with RSV, symptoms and viral accumulation in NS3-transgenic N. benthamiana were reduced compared with the wild type. Transcriptome analysis identified 2533 differentially expressed genes (DEGs) in the NS3-transgenic N. benthamiana, including 597 upregulated genes and 1936 downregulated genes. These DEGs were classified into three Gene Ontology (GO) categories and were associated with 43 GO terms. KEGG pathway analysis revealed that these DEGs were involved in pathways associated with ribosomes (ko03010), photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196), and carbon metabolism (ko01200). More than 70 DEGs were in these four pathways. Twelve DEGs were selected for RT-qPCR verification and subsequent analysis. The results showed that NS3 induced host resistance by affecting host gene expression. Conclusion NS3, which plays dual roles in the process of infection, may act as a VSR during RSV infection, and enable viral resistance in transgenic host plants. NS3 from RSV affects the expression of genes associated with ribosomes, photosynthesis, and carbon metabolism in N. benthamiana. This study enhances our understanding of the interactions between VSRs and host plants

    MgONPs Can Boost Plant Growth: Evidence from Increased Seedling Growth, Morpho-Physiological Activities, and Mg Uptake in Tobacco (Nicotiana tabacum L.)

    No full text
    In this study, we documented the impact of magnesium oxide nanoparticles (MgONPs) on the various morpho-physiological changes by root irrigation in tobacco plants in the matrix media, as well as the uptake and accumulation of the NPs over a range of concentrations (50–250 μg/mL). Our results showed that the seed germination rate was not affected following exposure to MgONPs for 5 days. Enhanced plant growth together with increased peroxidase activity (39.63 U mg−1 protein in the 250 μg/mL MgONPs treatment, 36.63 U mg−1 protein in the control), superoxide dismutase activity (30.15 U mg−1 protein compared to 26.95 U mg−1 protein in the control), and chlorophyll content (the chlorophyll a and b contents in 0 and 250 μg/mL of MgONPs were 0.21, 0.12 μg/g to 1.21, 0.67 μg/g, respectively) were observed after 30 days of MgONP treatment. However, the malondialdehyde, protein, and relative water contents did not differ significantly, indicating that the NPs in the test concentrations had no phytotoxicity and even promoted plant growth. Scanning electron microscopy and paraffin section observations indicated that the MgONPs did not affect the plant tissue structures and cells. In addition, an elevated Mg content was detected in the plant tissues exposed to MgONPs, suggesting that the Mg was taken up by the tobacco roots and translocated to the shoots and leaves, which were probably the most important tools to cause an increase in the chlorophyll content and stimulate growth. In particular, compared with the controls, a substantially higher Mg content was observed in the leaves (12.93 mg/g in the MgONPs treatment, 9.30 mg/g in the control) exposed to 250 μg/mL MgONPs, especially in the lower and middle leaves. This result confirmed that the contents of plant Mg-element in the old leaves were increased by MgONPs. In summary, this study investigated increased Mg uptake and growth stimulation, as well as the induction of various positive morpho-physiological changes to tobacco plants when exposed to MgONPs. Results elucidate the promotional impact of the NPs on plant health and their implications for agricultural safety and security
    corecore