26 research outputs found

    Corrigendum: Association between GSDMB gene polymorphism and cervical cancer in the Northeast Chinese Han population

    Get PDF
    Objective: The purpose of this study was to investigate the relationship between GSDMB gene polymorphism and genetic susceptibility to cervical cancer in the Han population in Northeast China. Methods: In this case–control study, the genotypes and alleles of rs8067378 in the GSDMB gene were analyzed by multiplex polymerase chain reaction (PCR) and next-generation sequencing methods in 482 cervical cancer (CC) patients, 775 cervical squamous intraepithelial lesion (SIL) patients, and 495 healthy women. The potential relationships between the SNP of the GSDMB gene with SIL and CC were analyzed by multivariate logistic regression analysis combined with 10,000 permutation tests. Results: In the comparison between the SIL group and the control group, the genotype and allele distribution frequencies of rs8067378 SNP of the GSDMB gene were statistically significant (p = 0.0493 and p = 0.0202, respectively). The allele distribution frequencies of rs8067378 were also statistically significant in the comparison between high-grade cervical squamous intraepithelial lesion (HSIL) and low-grade cervical squamous intraepithelial lesion (LSIL) groups with control group ( p = 0.0483 and p = 0.0330, respectively). Logistic regression analysis showed that after adjusting for age, the rs8067378 SNP of the GSDMB gene was significantly associated with the reduced risk of SIL under the dominant model (p = 0.0213, OR = 0.764, CI = 0.607–0.961) and the additive model (p = 0.0199, OR = 0.814, and CI = 0.684–0.968), and its mutant gene G may play a role in the progression of healthy people to LSIL and even HSIL as a protective factor. However, there was no significant association between cervical cancer and its subtypes with the control group (p > 0.05). After 10,000 permutations, there was still no correlation that has provided evidence for the accuracy of our study. Conclusion: The results of this study showed that rs8067378 single nucleotide polymorphism of the GSDMB gene may reduce the risk of SIL and protect the susceptibility to cervical precancerous lesions in the Northeast Chinese Han population, but it has no significant correlation with the progression of cervical cancer

    Combined Use of Deep Eutectic Solvents, Macroporous Resins, and Preparative Liquid Chromatography for the Isolation and Purification of Flavonoids and 20-Hydroxyecdysone from Chenopodium quinoa Willd

    No full text
    Deep eutectic solvents (DESs) were used in combination with macroporous resins to isolate and purify flavonoids and 20-hydroxyecdysone from Chenopodium quinoa Willd by preparative high-performance liquid chromatography (HPLC). The extraction performances of six DESs and the adsorption/desorption performances of five resins (AB-8, D101, HPD 400, HPD 600, and NKA-9) were investigated using the total flavonoid and 20-hydroxyecdysone extraction yields as the evaluation criteria, and the best-performing DES (choline chloride/urea, DES-6) and macroporous resin (D101) were further employed for phytochemical extraction and DES removal, respectively. The purified extract was subjected to preparative HPLC, and the five collected fractions were purified in a successive round of preparative HPLC to isolate three flavonoids and 20-hydroxyecdysone, which were identified by spectroscopic techniques. The use of a DES in this study significantly facilitated the preparative-scale isolation and purification of polar phytochemicals from complex plant systems

    Capacity Modeling of Weaving Areas on Urban Expressways with Exclusive Bus Lanes Based on Gap Acceptance Theory

    No full text
    Intense lane-changing maneuvers at weaving sections often cause traffic turbulence on expressways, especially in the presence of a concurrent medium exclusive bus lane (XBL) and general purpose lanes. Such intense lane-changing activity usually affects the operation and reduces the capacity of weaving sections in relation to their equivalent basic expressway segments. In this context, a study on the capacity model of weaving areas on an expressway with a median XBL is conducted based on the analysis of lane-change behaviors using gap acceptance theory. Two weaving sections on expressways with median XBL are selected as case studies to obtain the estimated capacity as well as the maximum traffic throughput under a certain bus saturation on the XBL. The results show that estimated capacity is larger than maximum traffic throughput because of low utilization rate of buses on the XBL, and capacity is significantly affected by weaving demand. Error measures based on the estimated and observed maximum traffic throughput are analyzed to verify the validity of the proposed model. A sensitivity analysis shows that, compared with the increase of on-ramp bus flow ratio, the increase of off-ramp bus flow ratio results in a more obvious trend of the reduction of capacity and maximum traffic throughput

    Environmentally-Friendly Extraction of Flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja Leaves with Deep Eutectic Solvents and Evaluation of Their Antioxidant Activities

    No full text
    Deep eutectic solvents (DESs) are commonly employed as environmentally-friendly solvents in numerous chemical applications owing to their unique physicochemical properties. In this study, a novel and environmentally-friendly extraction method based on ultrasound assisted-deep eutectic solvent extraction (UAE-DES) was investigated for the extraction of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus) leaves, and the antioxidant activities of these flavonoids were evaluated. Nine different DES systems based on either two or three components were tested, and the choline chloride/1,4–butanediol system (1:5 molar ratio) was selected as the optimal system for maximizing the flavonoid extraction yields. Other extraction conditions required to achieve the maximum flavonoid extraction yields from the leaves of C. paliurus were as follows: DES water content (v/v), 30%; extraction time, 30 min; temperature, 60 °C; and solid-liquid ratio, 20 mg/mL. Liquid chromatography-mass spectrometry allowed the detection of five flavonoids in the extract, namely kaempferol-7-O-α-l-rhamnoside, kaempferol, quercetin, quercetin-3-O-β-d-glucuronide, and kaempferol-3-O-β-d-glucuronide. In vitro antioxidant tests revealed that the flavonoid-containing extract exhibited strong DPPH and ABTS radical-scavenging abilities. Results indicate that UAE-DES is a suitable approach for the selective extraction of flavonoids from C. paliurus leaves, and DESs can be employed as sustainable extraction media for other bioactive compounds

    Analysis of Hollow Fiber Temperature Sensor Filled with Graphene-Ag Composite Nanowire and Liquid

    No full text
    A hollow fiber temperature sensor filled with graphene-Ag composite nanowire and liquid is presented and numerically characterized. The coupling properties and sensing performances are analyzed by finite element method (FEM) using both wavelength and amplitude interrogations. Due to the asymmetrical surface plasmon resonance sensing (SPR) region, the designed sensor exhibits strong birefringence, supporting two separate resonance peaks in orthogonal polarizations. Results show that x-polarized resonance peak can provide much better signal to noise ratio (SNR), wavelength and amplitude sensitivities than y-polarized, which is more suitable for tempertature detecting. The graphene-Ag composite nanowire filled into the hollow fiber core can not only solve the oxidation problem but also avoid the metal coating. A wide temperature range from 22 ∘C to 47 ∘C with steps of 5 ∘C is calculated and the temperature sensitivities we obtained are 9.44 nm/ ∘C for x-polarized and 5.33 nm/ ∘C for y-polarized, much higher than other sensors of the same type

    Tetraethoxysilane as a new facilitative film-forming additive for the lithium-ion battery with LiMn2O4 cathode

    No full text
    The effects of tetraethoxysilane (TEOS) as an electrolyte additive on the electrochemical performance of lithium ion batteries with LiMn2O 4 cathode were investigated. With 5% TEOS added, the capacity and cycling performance were improved, not only at room temperature, but also at low temperature, because of the formation of an effective solid electrolyte interphase (SEI) on the LiMn2O4 surface. The results of scanning electron microscopy (SEM) of the LiMn2O4 cathode after the initial charge/discharge cycle proved the existence of this SEI. Fourier transform infrared spectroscopy (FTIR) confirmed the compositions on the interface of the LiMn2O4 cathode. The results showed that this kind of effective organosilicon compound could provide a new promising direction for the development of organic additives to improve the electrochemical performance of lithium-ion batteries

    Metathesis of Mg2FeH6 and LiNH2 leading to hydrogen production at low temperatures

    No full text
    Mg2FeH6 with a purity of up to 94.5 wt% was synthesized and its interaction with LiNH2 was investigated in this study. It was found that Li4FeH6, normally synthesized by hydriding a mixture of LiH and Fe at 700 degrees C and 5.5 GPa H-2 pressure, can be formed via ball-milling Mg2FeH6 and LiNH2 under ambient conditions following the reaction of Mg2FeH6 + 4LiNH(2) -> Li4FeH6 + 2Mg(NH2)(2), Delta H = -92.8 kJ mol(-1). The formation of Li4FeH6 was confirmed by XRD, FTIR and Mossbauer spectroscopic characterization. Li4FeH6 further reacts with 2Mg(NH2)(2) releasing ca. 4.8 wt% H-2 at 225 degrees C and reabsorbing 3.7 wt% H-2 at 200 degrees C and 50 bar H-2 pressure. Mg(NH2)(2), LiH and Fe are the hydrogenated products

    Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation

    No full text
    Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method

    Relative Humidity Sensor Based on No-Core Fiber Coated by Agarose-Gel Film

    No full text
    A relative humidity (RH) sensor based on single-mode–no-core–single-mode fiber (SNCS) structure is proposed and experimentally demonstrated. The agarose gel is coated on the no-core fiber (NCF) as the cladding, and multimode interference (MMI) occurs in the SNCS structure. The transmission spectrum of the sensor is modulated at different ambient relative humidities due to the tunable refractive index property of the agarose gel film. The relative humidity can be measured by the wavelength shift and intensity variation of the dip in the transmission spectra. The humidity response of the sensors, coated with different concentrations and coating numbers of the agarose solution, were experimentally investigated. The wavelength and intensity sensitivity is obtained as −149 pm/%RH and −0.075 dB/%RH in the range of 30% RH to 75% RH, respectively. The rise and fall time is tested to be 4.8 s and 7.1 s, respectively. The proposed sensor has a great potential in real-time RH monitoring
    corecore