317 research outputs found

    Deployment of Leader-Follower Automated Vehicle Systems for Smart Work Zone Applications with a Queuing-based Traffic Assignment Approach

    Full text link
    The emerging technology of the Autonomous Truck Mounted Attenuator (ATMA), a leader-follower style vehicle system, utilizes connected and automated vehicle capabilities to enhance safety during transportation infrastructure maintenance in work zones. However, the speed difference between ATMA vehicles and general vehicles creates a moving bottleneck that reduces capacity and increases queue length, resulting in additional delays. The different routes taken by ATMA cause diverse patterns of time-varying capacity drops, which may affect the user equilibrium traffic assignment and lead to different system costs. This manuscript focuses on optimizing the routing for ATMA vehicles in a network to minimize the system cost associated with the slow-moving operation. To achieve this, a queuing-based traffic assignment approach is proposed to identify the system cost caused by the ATMA system. A queuing-based time-dependent (QBTD) travel time function, considering capacity drop, is introduced and applied in the static user equilibrium traffic assignment problem, with a result of adding dynamic characteristics. Subsequently, we formulate the queuing-based traffic assignment problem and solve it using a modified path-based algorithm. The methodology is validated using a small-size and a large-size network and compared with two benchmark models to analyze the benefit of capacity drop modeling and QBTD travel time function. Furthermore, the approach is applied to quantify the impact of different routes on the traffic system and identify an optimal route for ATMA vehicles performing maintenance work. Finally, sensitivity analysis is conducted to explore how the impact changes with variations in traffic demand and capacity reduction

    Understanding Optimization of Deep Learning via Jacobian Matrix and Lipschitz Constant

    Full text link
    This article provides a comprehensive understanding of optimization in deep learning, with a primary focus on the challenges of gradient vanishing and gradient exploding, which normally lead to diminished model representational ability and training instability, respectively. We analyze these two challenges through several strategic measures, including the improvement of gradient flow and the imposition of constraints on a network's Lipschitz constant. To help understand the current optimization methodologies, we categorize them into two classes: explicit optimization and implicit optimization. Explicit optimization methods involve direct manipulation of optimizer parameters, including weight, gradient, learning rate, and weight decay. Implicit optimization methods, by contrast, focus on improving the overall landscape of a network by enhancing its modules, such as residual shortcuts, normalization methods, attention mechanisms, and activations. In this article, we provide an in-depth analysis of these two optimization classes and undertake a thorough examination of the Jacobian matrices and the Lipschitz constants of many widely used deep learning modules, highlighting existing issues as well as potential improvements. Moreover, we also conduct a series of analytical experiments to substantiate our theoretical discussions. This article does not aim to propose a new optimizer or network. Rather, our intention is to present a comprehensive understanding of optimization in deep learning. We hope that this article will assist readers in gaining a deeper insight in this field and encourages the development of more robust, efficient, and high-performing models.Comment: International Digital Economy Academy (IDEA

    Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning

    Get PDF
    AbstractBackgroundTo utilize geothermal energy from hot springs, an organic Rankine cycle/vapor compression cycle (ORC/VCC) system was employed for air conditioning and a thermodynamic model was developed.MethodsSix working fluids, R123, R134a, R245fa, R600a, R600 and R290, were selected and compared in order to identify suitable working fluids which may yield high system efficiencies.ResultsThe calculated results show that because of high system pressure for R290 and R134a, R600a is the more suitable working fluid for ORC in terms of expander size parameter, system efficiency and system pressure. In addition, R600a is also the most appropriate working fluid for VCC in terms of pressure ratio and coefficient of performance. R600 and R600a are more suitable working fluids for ORC/VCC in terms of overall coefficient of performance, refrigerating capacity per unit mass flow rate and chilled water yield from per ton hot water.ConclusionsIn sum, R600a is the most suitable working fluid for ORC/VCC through comprehensive comparison of ORC efficiency, expander size parameter, pressure ratio, coefficient of performance, system pressure and chilled water yield from per ton hot water for six different working fluids. However, the flammability of R600a should attract enough attention
    • …
    corecore