2,315 research outputs found

    Gateway design for LAN interconnection via ISDN

    Get PDF
    Computer Networks and ISDN Systems19143-5

    Computational investigation of static multipole polarizabilities and sum rules for ground-state hydrogen-like ions

    Full text link
    High precision multipole polarizabilities, α\alpha_{\ell} for 4\ell \le 4 of the 1s1s ground state of the hydrogen isoelectronic series are obtained from the Dirac equation using the B-spline method with Notre Dame boundary conditions. Compact analytic expressions for the polarizabilities as a function of ZZ with a relative accuracy of 106^{-6} up to Z=100Z = 100 are determined by fitting to the calculated polarizabilities. The oscillator strengths satisfy the sum rules if0i()=0\sum_i f^{(\ell)}_{0i} = 0 for all multipoles from =1\ell = 1 to =4\ell = 4. The dispersion coefficients for the long-range H-H and H-He+^+ interactions are given.Comment: 8 figures, 8 table

    Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: the role of multipole effects

    Full text link
    We investigate theoretically the effects of interaction between an optical dipole (semiconductor quantum dot or molecule) and metal nanoparticles. The calculated absorption spectra of hybrid structures demonstrate strong effects of interference coming from the exciton-plasmon coupling. In particular, the absorption spectra acquire characteristic asymmetric lineshapes and strong anti-resonances. We present here an exact solution of the problem beyond the dipole approximation and find that the multipole treatment of the interaction is crucial for the understanding of strongly-interacting exciton-plasmon nano-systems. Interestingly, the visibility of the exciton resonance becomes greatly enhanced for small inter-particle distances due to the interference phenomenon, multipole effects, and electromagnetic enhancement. We find that the destructive interference is particularly strong. Using our exact theory, we show that the interference effects can be observed experimentally even in the exciting systems at room temperature.Comment: 9 page

    Experimental Quantum Communication without a Shared Reference Frame

    Get PDF
    We present an experimental realization of a robust quantum communication scheme [Phys. Rev. Lett. 93, 220501 (2004)] using pairs of photons entangled in polarization and time. Our method overcomes errors due to collective rotation of the polarization modes (e.g., birefringence in optical fiber or misalignment), is insensitive to the phase's fluctuation of the interferometer, and does not require any shared reference frame including time reference, except the need to label different photons. The practical robustness of the scheme is further shown by implementing a variation of the Bennett-Brassard 1984 quantum key distribution protocol over 1 km optical fiber.Comment: 4 pages, 4 figure

    Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar

    Get PDF
    Atmospheric turbulence parameters, such as turbulent kinetic energy and dissipation rate, are of great significance in weather prediction, meteorological disasters, and forecasting. Due to the lack of ideal direct detection methods, traditional structure function methods are mainly based on Kolmogorov's assumption of local isotropic turbulence and the well-known -5/3 power law within the inertial subrange, which limits their application. Here, we propose a method for directly measuring atmospheric turbulence parameters using coherent Doppler wind lidar, which can directly obtain atmospheric turbulence parameters and vertical structural features, breaking the limitations of traditional methods. The first published spatiotemporal distribution map of the power-law exponent of the inertial subrange is provided in this study, which indicates the heterogeneity of atmospheric turbulence at different altitudes and also indicates that the power-law exponent at high altitudes does not fully comply with the -5/3 power law, proving the superiority of our method. We analyze the results under different weather conditions, indicating that the method still holds. The turbulent kinetic energy and power-law index obtained by this method are continuously compared with the results obtained with an ultrasonic anemometer for a month-long period. The results of the two have high consistency and correlation, verifying the accuracy and applicability of the proposed method. The proposed method has great significance in studying the vertical structural characteristics of atmospheric turbulence.</p
    corecore