2 research outputs found

    1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance

    No full text
    Aiming to realize high-speed optical transmitters for isolator-free telecommunication systems, 1.3 μm p-modulation doped InGaAs/GaAs quantum dot (QD) lasers with a 400 μm long cavity have been reported. Compared with the un-doped QD laser as a reference, the p-doped QD laser emits at ground state, with an ultra-low threshold current and a high maximum output power. The p-doped QD laser also shows enhanced dynamic characteristics, with a 10 Gb/s large-signal direct modulation rate and a 7.8 GHz 3dB-bandwidth. In addition, the p-doped QD laser exhibits a strong coherent optical feedback resistance, which might be beyond −9 dB

    1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance

    No full text
    Aiming to realize high-speed optical transmitters for isolator-free telecommunication systems, 1.3 μm p-modulation doped InGaAs/GaAs quantum dot (QD) lasers with a 400 μm long cavity have been reported. Compared with the un-doped QD laser as a reference, the p-doped QD laser emits at ground state, with an ultra-low threshold current and a high maximum output power. The p-doped QD laser also shows enhanced dynamic characteristics, with a 10 Gb/s large-signal direct modulation rate and a 7.8 GHz 3dB-bandwidth. In addition, the p-doped QD laser exhibits a strong coherent optical feedback resistance, which might be beyond −9 dB
    corecore