13 research outputs found

    A New Monitoring Method and Its Application

    Get PDF
    For the monitoring of one hydroelectric station slope\u27s large caves in their excavation period, the paper puts forward a new monitoring method suited to monitor large, dangerous caves. In this paper, the characteristics of the new method and eight successful forecasts on the roof falls and surrounding rock collapses of the caves in the their digging period by using the new method are presented in detail

    Prediction-Forecast and Slip-Control for One Slope

    Get PDF
    Firstly, combining the engineering geological conditions of the slope, this paper analyses the forms and main causes of the slope possible slip, and predicts the slope\u27s stability in the different construction periods of the gully at the bottom of slope. In the basis of these, the work plan of quick cutting quick erecting for the gully is emphatically discussed. Then, the paper presents the slope monitoring method and monitoring results. At last, the paper re-analyses the site-monitoring data. The results of monitoring and re-analysis prove that work plan of quick cutting and quick erecting is correct and the poured concrete improves the state of the force on the slope and takes really effect on pressing the slope\u27s bottom in time

    Structural parameter variation working on the performance of anti-uplift multibell underreamed anchors

    Get PDF
    The structural parameters of multibell underreamed anchors play a crucial role in anchoring performance. The parameters of multibell underreamed anchor investigations are helpful when exploring optimized anchor structures. Based on the results of small-scale physical modelling tests, two types of multibell underreamed anchors were adopted under vertical uplifting loads. Numerical investigations were employed to study the effect of bell spacing, underream structure and bell dimension on the ultimate uplift bearing capacity. After an analysis of the anchorage mechanism, the anchoring efficiency was evaluated by the anchoring force provided by the unit concrete usage of the anchor, and the structural parameter λ equal to the surface area ratios of the expanded bell cone to the straight shaft between bells was defined. Then, the anchoring efficiency optimized structural parameters were presented. An analysis of model tests and simulation results showed that compared to concave bell surfaces, the convex shape could enhance the ultimate bearing capacity of a multibell underreamed anchor. There is an optimal value for the spacing of neighbouring bells, and there are three models of mechanisms for multibell anchors pulling out. When λ ∈ [1, 1.8], the multibell anchors can perform most efficiently to achieve their structural advantages

    Using Maxwell’s Theory to model and quantify the fracture evolution of cyclothymic deposition phosphate rock

    Get PDF
    The evolution and stability of fracturing in the cyclothymic deposition of phosphate rocks are strongly affected by the viscoelasticity and structural form of the rock-forming minerals. Presently, there is no standardized method that has been widely accepted to accurately quantify the elastic-plastic deformation and fracturing of such striped structural rock nor reflect the role of the different lithogenous minerals in phosphate rocks when subjected to viscoelastic strain loading. In this study, integrated mathematical equations were formulated for modelling the mechanical and fracture behaviour of cyclothymic deposition in structured phosphate rocks. These constitutive equations were developed based on Maxwell’s Theory after the elastic modulus and damping coefficient of the rock-forming mineral from the mechanical testing were substituted into the derived-equations. In these new models, the apatite stripes and dolomite stripes were incorporated into the transverse isotropic model through the analysis of structural characteristics of the phosphate rock. Through experimental validation, the response curves of the creep and stress relaxation tests were found to be consistent with the deformation curves generated by modelling using the mathematical equations. Overall, the formulated model along with the corresponding equations was found to exhibit good applicability properties to describe phosphate’s mechanical and fracture behaviour under low horizontal compressive stresses. In the study, the creep mechanism in phosphate rocks were satisfactorily analysed from the angles of microscopic morphology, cracks evolution, and inter-crystalline strength. The hard brittle apatite was found to be surrounded and separated by high creep variant dolomite. Furthermore, the analysis showed that dolomite crystals possessing high creep properties dominated the distribution and evolution of secondary structures in the phosphate rock, under the condition of long-term low-stress loading

    The Meso-Analysis of the Rock-Burst Debris of Rock Similar Material Based on SEM

    No full text
    In order to explore the specimen failure characteristics during rock-burst under different gradient stress conditions, in this paper, a novel experimental technique was proposed; a common series of tests under two gradient stress paths were conducted on rock similar material specimens using the true-triaxial gradient and hydraulic-pneumatic combined test apparatus. And plaster was used as the rock similar material. In the experimental process, several rock-burst debris with area sizes of 100 mm2 were collected, and the fractal dimensions of typical detrital section crystal contours were analyzed and calculated using a scanning electron microscopy (SEM) method. The results showed that the specimens’ failure characteristics which had been induced by the two gradient stress processes were various. Also, the mesoscopic morphology of the rock-burst detrital section had effectively reflected its macroscopic failure characteristics. It was found that the fractal dimensions of the crystal contours of the specimen’s detrital section had fractal characteristics, and the box-counting dimension based on the SEM image could quantitatively describe the rock-burst failure characteristics. Furthermore, under the same magnification, the fractal dimensions of the crystal contours of the splitting failures were found to be relatively smaller than those of the shearing failures

    Testing  Method for  the Range of  Fracture Zone of  Rock  Slope under Blasting Load

    No full text
    In engineering blasting, the determination of the range of rock blasting fracture zone has important guiding significance for blasting construction. This paper proposes a method that can accurately and directly obtain the range of rock blasting fracture zone. Based on the theory of elastic wave propagation, test rods which are made of appropriate material are selected and prepared. A certain number of boreholes are drilled for subsequent insertion of the test rods along the direction perpendicular to the free surface of the excavation at a certain distance from the blast hole. Based on the field blasting test results, the deepest fracture position of the test rod is used as the boundary of the blasting fracture zone, and the range of the rock blasting fracture zone is obtained. A numerical analysis model is established according to the Mohr–Coulomb constitutive relationship and the Von Mises yield criterion. Then, the range of the fracture zone and the maximum horizontal radius of the fracture zone are analyzed and obtained. The numerical analysis results are compared with the field measured data. It is demonstrated that the range of the fracture zone obtained by the numerical simulation is in good agreement with the blasting test results of the pre-embedded test rods. The research results can provide references for the safety control of blasting and excavation of rock slopes

    Identification of Key Genes Induced by Different Potassium Levels Provides Insight into the Formation of Fruit Quality in Grapes

    No full text
    Inadequate potassium (K) availability is a common abiotic stress that limits the growth and quality of fruit trees. Few studies have investigated the physiological and molecular responses of grapes at different potassium levels. In this study, an integrated approach was developed for grapevines grown at four different potassium fertilization levels [0 (K0-CK), 150 (K150), 300 (K300), and 450 (K450) g/plant] in combination with metabolite measurements and transcript analysis. The results showed that different K levels affected the accumulation of sugars and anthocyanins in the fruit. At 78 days after bloom (DAB), the K150, K300, and K450 treatments increased soluble sugar content by 37.39%, 31.10% and 32.59%, respectively, and anthocyanin content by 49.78%, 24.10%, and 13.06%, respectively, compared to K0. Weighted gene co-expression network analysis (WGCNA) of DEGs identified a network of 11 grapevines involved. During fruit development, potassium application promoted the accumulation of anthocyanins and sugars in fruit by regulating the up-regulation of GST, AT, UFGT and SPS, HT, PK gene expressions. These results suggest that potassium deficiency inhibits anthocyanin and sugar metabolism. In addition, it promotes the up-regulation of KUP expression, which is the main cause of K accumulation in fruits. Together, our data revealed the molecular mechanism in response to different K levels during fruit quality formation and provides the scientific foundation for the improvement of fruit quality by adding K fertilizer
    corecore