18,358 research outputs found
Parametric survey of longitudinal prominence oscillation simulations
It is found that both microflare-sized impulsive heating at one leg of the
loop and a suddenly imposed velocity perturbation can propel the prominence to
oscillate along the magnetic dip. An extensive parameter survey results in a
scaling law, showing that the period of the oscillation, which weakly depends
on the length and height of the prominence, and the amplitude of the
perturbations, scales with , where represents the
curvature radius of the dip, and is the gravitational acceleration of
the Sun. This is consistent with the linear theory of a pendulum, which implies
that the field-aligned component of gravity is the main restoring force for the
prominence longitudinal oscillations, as confirmed by the force analysis.
However, the gas pressure gradient becomes non-negligible for short
prominences. The oscillation damps with time in the presence of non-adiabatic
processes. Compared to heat conduction, the radiative cooling is the dominant
factor leading to the damping. A scaling law for the damping timescale is
derived, i.e., , showing
strong dependence on the prominence length , the geometry of the magnetic
dip (characterized by the depth and the width ), and the velocity
perturbation amplitude . The larger the amplitude, the faster the
oscillation damps. It is also found that mass drainage significantly reduces
the damping timescale when the perturbation is too strong.Comment: 17 PAGES, 8FIGURE
Supersymmetric Modified Korteweg-de Vries Equation: Bilinear Approach
A proper bilinear form is proposed for the N=1 supersymmetric modified
Korteweg-de Vries equation. The bilinear B\"{a}cklund transformation of this
system is constructed. As applications, some solutions are presented for it.Comment: 8 pages, LaTeX using packages amsmath and amssymb, some corrections
mad
Photometric properties and luminosity function of nearby massive early-type galaxies
We perform photometric analyses for a bright early-type galaxy (ETG) sample
with 2949 galaxies ( mag) in the redshift range of 0.05 to
0.15, drawn from the SDSS DR7 with morphological classification from Galaxy Zoo
1. We measure the Petrosian and isophotal magnitudes, as well as the
corresponding half-light radius for each galaxy. We find that for brightest
galaxies ( mag), our Petrosian magnitudes, and isophotal
magnitudes to 25 and 1\% of the sky brightness are on
average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian
values, respectively. In the first case the underestimations are caused by
overestimations in the sky background by the SDSS PHOTO algorithm, while the
latter two are also due to deeper photometry. Similarly, the typical half-light
radii () measured by the SDSS algorithm are smaller than our
measurements. As a result, the bright-end of the -band luminosity function
is found to decline more slowly than previous works. Our measured luminosity
densities at the bright end are more than one order of magnitude higher than
those of Blanton et al. (2003), and the stellar mass densities at and are a few tenths
and a factor of few higher than those of Bernardi et al. (2010). These results
may significantly alleviate the tension in the assembly of massive galaxies
between observations and predictions of the hierarchical structure formation
model.Comment: 43 pages, 14 figures, version accepted for publication in the
Astrophysical Journa
Propiedades fÃsico-quÃmicas y composisción quÃmica de aceites de semillas de Seinat (Cucumis melo var. Tibish) y su actividad antioxidante
Seinat (Cucumis melo var. tibish) seeds were analyzed for their physiochemical properties and chemical composition of the oil in addition to antioxidant activity. The crude oil content was 31.1%, while the moisture, fiber, protein, ash and total sugar contents were 4.2%, 24.7%, 28.5%, 4.3%, and 6.9%, respectively. The main fatty acids were linoleic, oleic, palmitic, and stearic acids (61.10%, 18.75%, 10.37% and 9.18%, respectively). The total phenolic content was 28.17 mg·g–1 oil. Seinat seed oil also contained a good level of tocopherols; of which δ-tocopherol (63.43%) showed the highest content. β-sitosterol was found at 289 mg·100g–1 oil of total sterols (302 mg·100g–1) in the oil. The crude oil showed a good antioxidant activity in four assays including reducing power, β-carotene bleaching inhibition activity, ABTS and DPPH radical scavenging activities.Se analizó las propiedades fisicoquÃmicas y la composición de aceites de semillas de seinat (Cucumis melo var. Tibish) además de su actividad antioxidante. El contenido de aceite crudo fue de 31,1%, mientras que la humedad, fibra, proteÃnas, cenizas y contenido total de azúcares fue de 4,2%, 24,7%, 28,5%, 4,3%, y 6,9%, respectivamente. Los principales ácidos grasos fueron: linoleico, oleico, palmÃtico, y esteárico (61,10%, 18,75%, 10,37% y 9,18%, respectivamente). El contenido de fenoles totales fue de 28,17 mg.g–1 de aceite. El aceite de semilla de Seinat también contiene un buen nivel de tocoferoles, de los cuales el mayoritario es δ-tocoferol (63,43%). β-sitosterol es el esterol mayoritario con 289 mg·100 g–1 de aceite y los esteroles totales 302 mg·100 g–1 de aceite. El aceite crudo mostró una buena actividad antioxidante en cuatro ensayos incluyendo la reducción de potencia, actividad de inhibición de blanqueo del β-caroteno, actividad captadora de radicales ABTS y DPPH
Excited-state intramolecular proton transfer to carbon atoms: nonadiabatic surface-hopping dynamics simulations
Excited-state intramolecular proton transfer (ESIPT) between two highly electronegative atoms, for example, oxygen and nitrogen, has been intensely studied experimentally and computationally, whereas there has been much less theoretical work on ESIPT to other atoms such as carbon. We have employed CASSCF, MS-CASPT2, RI-ADC(2), OM2/MRCI, DFT, and TDDFT methods to study the mechanistic photochemistry of 2-phenylphenol, for which such an ESIPT has been observed experimentally. According to static electronic structure calculations, irradiation of 2-phenylphenol populates the bright S1 state, which has a rather flat potential in the Franck–Condon region (with a shallow enol minimum at the CASSCF level) and may undergo an essentially barrierless ESIPT to the more stable S1 keto species. There are two S1/S0 conical intersections that mediate relaxation to the ground state, one in the enol region and one in the keto region, with the latter one substantially lower in energy. After S1 → S0 internal conversion, the transient keto species can return back to the S0 enol structure via reverse ground-state hydrogen transfer in a facile tautomerization. This mechanistic scenario is verified by OM2/MRCI-based fewest-switches surface-hopping simulations that provide detailed dynamic information. In these trajectories, ESIPT is complete within 118 fs; the corresponding S1 excited-state lifetime is computed to be 373 fs in vacuum. Most of the trajectories decay to the ground state via the S1/S0 conical intersection in the keto region (67%), and the remaining ones via the enol region (33%). The combination of static electronic structure computations and nonadiabatic dynamics simulations is expected to be generally useful for understanding the mechanistic photophysics and photochemistry of molecules with intramolecular hydrogen bonds
Singular Effects of Spin-Flip Scattering on Gapped Dirac Fermions
We investigate the effects of spin-flip scattering on the Hall transport and
spectral properties of gapped Dirac fermions. We find that in the weak
scattering regime, the Berry curvature distribution is dramatically compressed
in the electronic energy spectrum, becoming singular at band edges. As a result
the Hall conductivity has a sudden jump (or drop) of when the Fermi
energy sweeps across the band edges, and otherwise is a constant quantized in
units of . In parallel, spectral properties such as the density of
states and spin polarization are also greatly enhanced at band edges. Possible
experimental methods to detect these effects are discussed
Why would you put a flashlight in a dark matter detector?
Silicon photomultipliers (SiPMs) are solid-state, single-photon sensitive,
pixelated sensors whose usage for scintillation detection has rapidly increased
over the past decade. It is known that the avalanche process within the device,
which renders a single photon detectable, can also generate secondary photons
which may be detected by a separate device. This effect, known as external
crosstalk, could potentially degrade the science goals of future xenon dark
matter experiments. In this article, we measure the effect of external
crosstalk in a dual-phase, liquid xenon time projection chamber fully
instrumented with SiPMs. We then consider the implications for a future xenon
dark matter experiment utilizing SiPMs and discuss possible solutions.Comment: 12 pages, 6 figure
- …