24,919 research outputs found

    Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    Full text link
    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.Comment: 15 pages, 6 figure

    Spin-injection through an Fe/InAs Interface

    Get PDF
    The spin-dependence of the interface resistance between ferromagnetic Fe and InAs is calculated from first-principles for specular and disordered (001) interfaces. Because of the symmetry mismatch in the minority-spin channel, the specular interface acts as an efficient spin filter with a transmitted current polarisation between 98 an 89%. The resistance of a specular interface in the diffusive regime is comparable to the resistance of a few microns of bulk InAs. Symmetry-breaking arising from interface disorder reduces the spin asymmetry substantially and we conclude that efficient spin injection from Fe into InAs can only be realized using high quality epitaxial interfaces.Comment: 4 pages, 4 figure

    Tilt-Induced Anisotropic to Isotropic Phase Transition at ν=5/2\nu = 5/2

    Get PDF
    A modest in-plane magnetic field \Bpar\ is sufficient to destroy the fractional quantized Hall states at ν=5/2\nu = 5/2 and 7/2 and replace them with anisotropic compressible phases. Remarkably, we find that at larger \Bpar\ these anisotropic phases can themselves be replaced by isotropic compressible phases reminiscent of the composite fermion fluid at ν=1/2\nu = 1/2. We present strong evidence that this transition is a consequence of the mixing of Landau levels from different electric subbands. We also report surprising dependences of the energy gaps at ν=5/2\nu = 5/2 and 7/3 on the width of the confinement potential.Comment: Accepted by Phys. Rev. Lett. This is a final version with rewritten introduction and modified figure

    Vortex State in Na_xCoO_2.yH_2O: p_x\pm ip_y-wave versus d_{x^2-y^2}\pm id_{xy}-wave Pairing

    Get PDF
    Based on an effective Hamiltonian specified in the triangular lattice with possible px±ipyp_x\pm ip_y- or dx2−y2±idxyd_{x^2-y^2}\pm id_{xy}-wave pairing, which has close relevance to the newly discovered Na0.35_{0.35}CoO2_2⋅y\cdot yH2_2O, the electronic structure of the vortex state is studied by solving the Bogoliubov-de Gennes equations. It is found that px±ipyp_x\pm ip_y-wave is favored for the electron doping as the hopping integral t<0t<0. The lowest-lying vortex bound states are found to have respectively zero and positive energies for px±ipyp_x\pm ip_y- and dx2−y2±idxyd_{x^2-y^2}\pm id_{xy}-wave superconductors, whose vortex structures exhibit the intriguing six-fold symmetry. In the presence of strong on-site repulsion, the antiferromagnetic and ferromagnetic orders are induced around the vortex cores for the former and the latter, respectively, both of which cause the splitting of the LDOS peaks due to the lifting of spin degeneracy. STM and NMR measurements are able to probe the new features of vortex states uncovered in this work.Comment: 4 pages, 4 figures, The slightly shorter version was submitted to PR

    Interface resistance of disordered magnetic multilayers

    Full text link
    We study the effect of interface disorder on the spin-dependent interface resistances of Co/Cu, Fe/Cr and Au/Ag multilayers using a newly developed method for calculating transmission matrices from first-principles. The efficient implementation using tight-binding linear-muffin-tin orbitals allows us to model interface disorder using large lateral supercells whereby specular and diffuse scattering are treated on an equal footing. Without introducing any free parameters, quantitative agreement with experiment is obtained. We predict that disorder {\it reduces} the majority-spin interface resistance of Fe/Cr(100) multilayers by a factor 3.Comment: 5 pages, 2 figures, submitted to PR

    Comparison of Measured and Calculated Specific Resistances of Pd/Pt Interfaces

    Full text link
    We compare specific resistances (AR equals area A times resistance R) of sputtered Pd/Pt interfaces measured in two different ways with no-free-parameter calculations. One way gives 2AR(Pd/Pt) of 0.29 (0.03) fohm-m(2) and the other 0.17 (0.13) fohm-m(2). From these we derive a best estimate of 2AR(Pd/Pt) of 0.28 (0.06) fohm-m(2), which overlaps with no-free-parameter calculations: 2AR(predicted) of 0.30 (0.04) fohm-m(2) for flat, perfect interfaces, or 0.33 (0.04) fohm-m(2) for interfaces composed of 2 monolayers of a 50percent-50percent PdPt alloy. These results support three prior examples of agreement between calculations and measurements for pairs of metals having the same crystal structure and the same lattice parameter to within 1 percent. We also estimate the spin-flipping probability at Pd/Pt interfaces as 0.13 (0.08).Comment: 3 pages, 3 figures, submitted for publication New version has corrected value of delta(Pd/Pt

    Orientation-Dependent Transparency of Metallic Interfaces

    Get PDF
    As devices are reduced in size, interfaces start to dominate electrical transport making it essential to be able to describe reliably how they transmit and reflect electrons. For a number of nearly perfectly lattice-matched materials, we calculate from first-principles the dependence of the interface transparency on the crystal orientation. Quite remarkably, the largest anisotropy is predicted for interfaces between the prototype free-electron materials silver and aluminium for which a massive factor of two difference between (111) and (001) interfaces is found

    Sensitivity of Ag/Al Interface Specific Resistances to Interfacial Intermixing

    Full text link
    We have measured an Ag/Al interface specific resistance, 2AR(Ag/Al)(111) = 1.4 fOhm-m^2, that is twice that predicted for a perfect interface, 50% larger than for a 2 ML 50%-50% alloy, and even larger than our newly predicted 1.3 fOhmm^2 for a 4 ML 50%-50% alloy. Such a large value of 2ARAg/Al(111) confirms a predicted sensitivity to interfacial disorder and suggests an interface greater than or equal to 4 ML thick. From our calculations, a predicted anisotropy ratio, 2AR(Ag/Al)(001)/2AR(Ag/Al)(111), of more then 4 for a perfect interface, should be reduced to less than 2 for a 4 ML interface, making it harder to detect any such anisotropy.Comment: 3 pages, 2 figures, 1 table. In Press: Journal of Applied Physic

    Setting, Mechanical, Morphological, Degradation and Antibacterial Properties of Brushite cements

    Get PDF
    Aims: This study aim was to develop high strength, antibacterial-releasing brushite cements with controllable setting and porosity for bone-filling. Materials and Methods: Monocalcium phosphate monohydrate (MCPM) was reacted with equimolar β-tricalcium phosphate (TCP) and 800mM aqueous citric acid (CA) containing 0, 20, or 40wt% of antibacterial ε-polylysine (PLS). The large MCPM monoclinic crystals (10x100x500 micron) were used as received or after grinding. The powder to liquid ratio was 3:1 or 4:1. Setting kinetics, mechanical strengths, fracture surface morphologies, degradation rates, and PLS release was undertaken. Additionally, MRSA colony forming units (CFU) on set material discs with 0 versus 40wt% PLS and in surrounding broth medium was compared. Results Use of smaller particles and increased PLS lead to formation of more stable intermediate complexes and slower Brushite formation. Formulations with intermediate MCPM particle size and higher powder content had significantly higher flexural strengths. Pores / channels with dimensions comparable with those of the original MCPM crystals were detected on the fracture surfaces. Dissolution rates were affected by MCPM particle size but not PLS content. PLS release occurred primarily in the first 24 hours of set disc immersion in water. Addition of PLS enabled MRSA growth to decline from 1.8 x 107 to 2.5 x 104 on a set disc and from 2.0 x 109 to 1.2 x 104 CFU in the surrounding medium. . Conclusion and significance The above antibacterial Brushite cements could be employed in the treatment of infected bone (e.g. periodontitis, implantitis, osteomyelitis). Controlled setting is required to minimise leakage away from the required site of application. The channels in the cements and dissolution will allow bone cell penetration and provide ions for new bone formation respectively. The higher strengths will enable application in greater load bearing clinical situations
    • …
    corecore