15 research outputs found

    Regional cerebral metabolic levels and turnover in awake rats after acute or chronic spinal cord injury

    Get PDF
    Spinal cord injury (SCI) is a common cause of disability, which often leads to sensorimotor cortex dysfunction above the spinal injury site. However, the cerebral regional effects on metabolic information after SCI have been little studied. Here, adult Sprague-Dawley rats were divided into acute and chronic treatment groups and sham groups with day-matched periods. The Basso, Beatte, and Bresnahan scores method were utilized to evaluate the changes in behaviors during the recovery of the animals, and the metabolic information was measured with the 1 H-observed/13 C-edited NMR method. Total metabolic concentrations in every region were almost similar in both treated groups. However, the metabolic kinetics in most regions in the acute group were significantly altered (P < .05), particularly in the cortical area, thalamus and medulla (P < .01). After long-term recovery, some metabolic kinetics were recovered, especially in the temporal cortex, occipital cortex, and medulla. The metabolic kinetic changes revealed the alteration of metabolism and neurotransmission in different brain regions after SCI, which present evidence for the alternation of brain glucose oxidation. Therefore, this shows the significant influence of SCI on cerebral function and neuroscience research. This study also provides the theoretical basis for clinical therapy after SCI, such as mitochondrial transplantation. Keywords: NMR; brain regions; metabolic kinetics; neurotransmitters; spinal cord injury

    The value of diffusion tensor tractography delineating corticospinal tract in glioma in rat: validation via correlation histology

    Get PDF
    Background An assessment of the degree of white matter tract injury is important in neurosurgical planning for patients with gliomas. The main objective of this study was to assess the injury grade of the corticospinal tract (CST) in rats with glioma using diffusion tensor imaging (DTI). Methods A total 17 rats underwent 7.0T MRI on day 10 after tumor implantation. The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were acquired in the tumor, peritumoral and contralateral areas, and the ADC ratio (ipsilateral ADC/contralateral ADC) and rFA (relative FA = ipsilateral FA/contralateral FA) in the peritumoral areas were measured. The CST injury was divided into three grades and delineated by diffusion tensor tractography reconstruction imaging. The fiber density index (FDi) of the ipsilateral and contralateral CST and rFDi (relative FDi = ipsilateral FDi/contralateral FDi) in the peritumoral areas were measured. After the mice were sacrificed, the invasion of glioma cells and fraction of proliferating cells were observed by hematoxylin-eosin and Ki67 staining in the tumor and peritumoral areas. The correlations among the pathology results, CST injury grade and DTI parameter values were calculated using a Spearman correlation analysis. One-way analysis of variance was performed to compare the different CST injury grade by the rFA, rFDi and ADC ratio values. Results The tumor cells and proliferation index were positively correlated with the CST injury grade (r = 0.8857, 0.9233, P < 0.001). A negative correlation was demonstrated between the tumor cells and the rFA and rFDi values in the peritumoral areas (r = −0.8571, −0.5588), and the proliferation index was negatively correlated with the rFA and rFDi values (r = −0.8571, −0.5588), while the ADC ratio was not correlated with the tumor cells or proliferation index. The rFA values between the CST injury grades (1 and 3, 2 and 3) and the rFDi values in grades 1 and 3 significantly differed (P < 0.05). Conclusions Diffusion tensor imaging may be used to quantify the injury degrees of CST involving brain glioma in rats. Our data suggest that these quantitative parameters may be used to enhance the efficiency of delineating the relationship between fiber tracts and malignant tumor

    Longitudinal [18F]FDG and [13N]NH3 PET/CT imaging of brain and spinal cord in a canine hemisection spinal cord injury model

    Get PDF
    To further understand the neurological changes induced by spinal cord injury (SCI) in its acute and subacute stages, we evaluated longitudinal changes in glucose and glutamate metabolism in the spinal cord and brain regions of a canine hemisection SCI model. [18F]FDG and [13N]NH3 positron-emission tomography (PET) with computed tomography (CT) was performed before SCI and at 1, 3, 7, 14, and 21 days after SCI. Spinal cord [18F]FDG uptake increased and peaked at 3 days post SCI. Similar changes were observed in the brain regions but were not statistically significant. Compared to the acute phase of SCI, [13N]NH3 uptake increased in the subacute stage and peaked at 7 days post SCI in all analyzed brain regions. But in spinal cord, no [13N]NH3 uptake was detected before SCI when the blood-spinal cord barrier (BSCB) was intact, then gradually increased when the BSCB was damaged after SCI. [13N]NH3 uptake was significantly correlated with plasma levels of the BSCB disruption marker, monocyte chemoattractant protein-1 (MCP-1). Overall, we showed that SCI induced in vivo changes in glucose uptake in both the spinal cord and the examined brain regions, and changes in glutamine synthetase activity in the latter. Moreover, our results suggest that [13N]NH3 PET may serve as a potential method for assessing BSCB permeability in vivo.</div

    Intravenous transplantation of olfactory ensheathing cells reduces neuroinflammation after spinal cord injury via interleukin-1 receptor antagonist

    Get PDF
    Rationale: Olfactory ensheathing cell (OEC) transplantation has emerged as a promising therapy for spinal cord injury (SCI) repair. In the present study, we explored the possible mechanisms of OECs transplantation underlying neuroinflammation modulation.Methods: Spinal cord inflammation after intravenous OEC transplantation was detected in vivo and ex vivo by translocator protein PET tracer [F-18]F-DPA. To track transplanted cells, OECs were transduced with enhanced green fluorescent protein (eGFP) and HSV1-39tk using lentiviral vector and were monitored by fluorescence imaging and [F-18]FHBG study. Protein microarray analysis and ELISA studies were employed to analyze differential proteins in the injured spinal cord after OEC transplantation. The anti-inflammation function of the upregulated protein was also proved by in vitro gene knocking down experiments and OECs/microglia co-culture experiment.Results: The inflammation in the spinal cord was decreased after OEC intravenous transplantation. The HSV1-39tk-eGFP-transduced OECs showed no accumulation in major organs and were found at the injury site. After OEC transplantation, in the spinal cord tissues, the interleukin-1 receptor antagonist (IL-1Ra) was highly upregulated while many chemokines, including pro-inflammatory chemokines IL-1 alpha, IL-1 beta were downregulated. In vitro studies confirmed that lipopolysaccharide (LPS) stimulus triggered OECs to secrete IL-1Ra. OECs significantly suppressed LPS-stimulated microglial activity, whereas IL-1Ra gene knockdown significantly reduced their ability to modulate microglial activity.Conclusion: The OECs that reached the lesion site were activated by the release of pro-inflammatory cytokines from activated microglia in the lesion site and secreted IL-1Ra to reduce neuroinflammation. Intravenous transplantation of OECs has high therapeutic effectiveness for the treatment of SCI via the secretion of IL-1Ra to reduce neuroinflammation

    Microsurgical and tractographic anatomical study of insular and transsylvian transinsular approach

    Get PDF
    This study is to define the operative anatomy of the insula with emphasis on the transsylvian transinsular approach. The anatomy was studied in 15 brain specimens, among five were dissected by use of fiber dissection technique; diffusion tensor imaging of 10 healthy volunteers was obtained with a 1.5-T MR system. The temporal stem consists mainly of the uncinate fasciculus, inferior occipitofrontal fasciculus, Meyer’s loop of the optic radiation and anterior commissure. The transinsular approach requires an incision of the inferior limiting sulcus. In this procedure, the fibers of the temporal stem can be interrupted to various degrees. The fiber dissection technique is a very relevant and reliable method for neurosurgeons to study the details of brain anatomic features. The DTI fiber tracking technique can identify the fiber tracts of the temporal stem. Moreover, it will also help further functional study of human insula

    Down-regulation of PER2 increases apoptosis of gliomas after X-ray irradiation

    Get PDF
    Period2 (PER2), a core circadian gene, not only modulates circadian rhythm but also may play an important role in other biological processes including pathways involved in the proliferation and apoptosis of tumor cells. In this study, we investigated the mechanism by which downregulated expression of PER2 promotes apoptosis of wild-type TP53 human glioma U343 cells exposed to X-rays. U343 cells were irradiated with 6mV 10Gy X-ray irradiation after infection with shRNA lentivirus to reduce expression of PER2, and then analyzed by several methods such as SCGE analysis, flow cytometry, RT-PCR, and western blotting. Compared with controls, U343 cells expressing low levels of PER2 showed serious DNA damage when exposed to X-ray irradiation in SCGE analysis (P<0.05), and higher death rates in flow cytometry assay (P<0.05). RT-PCR and western blot analysis both revealed decreased expression of ATM and TP53, which regulate DNA damage and repair via the ATM-TP53 pathway, and an increased expression of C-MYC, which is related to cell apoptosis. Thus, our research suggests that PER2 may play an important role in tumor radiotherapy, which is attributable to enhanced ATM-TP53 signaling and pro-apoptotic processes. These findings provide a new target for the clinical treatment of glioma, and a reliable basis for postradiation therapy and gene therapy for glioma and other cancers

    Investigation and Comparison of Nutritional Supplement Use, Knowledge, and Attitudes in Medical and Non-Medical Students in China

    No full text
    The objective of this study is to investigate and compare the prevalence, knowledge, and attitudes of Chinese university students with respect to nutritional supplements. We conducted a cross-sectional study in several universities around China from January to December 2017, and enrolled a total of 8752 students. Of these, 4252 were medical students and 4500 were non-medical students. The use of nutritional supplements was reported by 58.9% in universities students, with a higher rate for medical students as compared to non-medical students. It was found 24.2% of participants had taken supplements in the past year. Medical students had a higher level of knowledge on nutritional supplements than non-medical students (p &lt; 0.001). The most commonly used nutritional supplements were vitamin C, calcium, and vitamin B. Gender (p &lt; 0.001), household income (p &lt; 0.001), and health status (p &lt; 0.001) were related to the nutritional supplement use after adjustment for related factors. In conclusion, in China, nutritional supplement use was found to be more common in medical students than those studying other disciplines, and was associated with sex, income, and health status. The attitude towards nutritional supplements by medical students was positive. Students&#8217; knowledge levels about nutritional supplements need to be improve

    Comparison of the effects of 3 kinds of oils rich in omega-3 polyunsaturated fatty acids on glycolipid metabolism and lipoprotein subfractions

    No full text
    Dietary omega-3 polyunsaturated fatty acids (ω-3 PUFAs) can be classified into animal- and plant-derived ω-3 PUFAs. Patients with type 2 diabetes (T2DM) are frequently accompanied by dyslipidemia, which is closely related to the high-density lipoprotein (HDL-C) subfractions change. This study aimed to determine the effects of different sources ω-3 PUFAs on glucolipid metabolism and lipoprotein subfractions in T2DM with dyslipidemia. Ninety T2DM patients with dyslipidemia were randomly assigned to take 3 g/day fish oil (FO, containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), 3 g/day perilla oil (PO, containing α-linolenic acid (ALA)), or 3 g/day blend oil (BO, containing EPA, DHA and ALA) for 3 months. 90 patients completed the intervention. There was a significant reduction of glycated hemoglobin (HbA1c) in all the groups. The triglycerides (TG) in the FO group were significantly different with a group × time interaction (P = 0.043), which was higher compared with the other two groups. The serum small HDL-C subfractions in the PO group was higher and the serum large HDL-C subfractions in the PO group was lower than those in the BO and FO groups. Plant-derived ω-3 PUFAs are more effective at controlling blood glucose than animal-derived ω-3 PUFAs. However, animal-derived ω-3 PUFAs have a significant lowering effect on TG compared with plant-derived ω-3 PUFAs. Particularly, large HDL-C subfractions after animal-derived ω-3 PUFAs intake were higher than plant-derived ω-3 PUFAs intake; while small HDL-C subfractions were lower. Both the animal- and plant-derived ω-3 PUFAs have practical value in improving glucose and lipids metabolism in T2DM patients with dyslipidemia
    corecore