9,032 research outputs found

    Graphs with many valencies and few eigenvalues

    Full text link
    Dom de Caen posed the question whether connected graphs with three distinct eigenvalues have at most three distinct valencies. We do not answer this question, but instead construct connected graphs with four and five distinct eigenvalues and arbitrarily many distinct valencies. The graphs with four distinct eigenvalues come from regular two-graphs. As a side result, we characterize the disconnected graphs and the graphs with three distinct eigenvalues in the switching class of a regular two-graph

    Deterministic Constructions of Binary Measurement Matrices from Finite Geometry

    Full text link
    Deterministic constructions of measurement matrices in compressed sensing (CS) are considered in this paper. The constructions are inspired by the recent discovery of Dimakis, Smarandache and Vontobel which says that parity-check matrices of good low-density parity-check (LDPC) codes can be used as {provably} good measurement matrices for compressed sensing under â„“1\ell_1-minimization. The performance of the proposed binary measurement matrices is mainly theoretically analyzed with the help of the analyzing methods and results from (finite geometry) LDPC codes. Particularly, several lower bounds of the spark (i.e., the smallest number of columns that are linearly dependent, which totally characterizes the recovery performance of â„“0\ell_0-minimization) of general binary matrices and finite geometry matrices are obtained and they improve the previously known results in most cases. Simulation results show that the proposed matrices perform comparably to, sometimes even better than, the corresponding Gaussian random matrices. Moreover, the proposed matrices are sparse, binary, and most of them have cyclic or quasi-cyclic structure, which will make the hardware realization convenient and easy.Comment: 12 pages, 11 figure

    A spectral characterization of the ss-clique extension of the triangular graphs

    Full text link
    A regular graph is co-edge regular if there exists a constant μ\mu such that any two distinct and non-adjacent vertices have exactly μ\mu common neighbors. In this paper, we show that for integers s≥2s\ge 2 and nn large enough, any co-edge-regular graph which is cospectral with the ss-clique extension of the triangular graph T((n)T((n) is exactly the ss-clique extension of the triangular graph T(n)T(n).Comment: arXiv admin note: text overlap with arXiv:1806.0359
    • …
    corecore