9,032 research outputs found
Graphs with many valencies and few eigenvalues
Dom de Caen posed the question whether connected graphs with three distinct
eigenvalues have at most three distinct valencies. We do not answer this
question, but instead construct connected graphs with four and five distinct
eigenvalues and arbitrarily many distinct valencies. The graphs with four
distinct eigenvalues come from regular two-graphs. As a side result, we
characterize the disconnected graphs and the graphs with three distinct
eigenvalues in the switching class of a regular two-graph
Deterministic Constructions of Binary Measurement Matrices from Finite Geometry
Deterministic constructions of measurement matrices in compressed sensing
(CS) are considered in this paper. The constructions are inspired by the recent
discovery of Dimakis, Smarandache and Vontobel which says that parity-check
matrices of good low-density parity-check (LDPC) codes can be used as
{provably} good measurement matrices for compressed sensing under
-minimization. The performance of the proposed binary measurement
matrices is mainly theoretically analyzed with the help of the analyzing
methods and results from (finite geometry) LDPC codes. Particularly, several
lower bounds of the spark (i.e., the smallest number of columns that are
linearly dependent, which totally characterizes the recovery performance of
-minimization) of general binary matrices and finite geometry matrices
are obtained and they improve the previously known results in most cases.
Simulation results show that the proposed matrices perform comparably to,
sometimes even better than, the corresponding Gaussian random matrices.
Moreover, the proposed matrices are sparse, binary, and most of them have
cyclic or quasi-cyclic structure, which will make the hardware realization
convenient and easy.Comment: 12 pages, 11 figure
A spectral characterization of the -clique extension of the triangular graphs
A regular graph is co-edge regular if there exists a constant such that
any two distinct and non-adjacent vertices have exactly common neighbors.
In this paper, we show that for integers and large enough, any
co-edge-regular graph which is cospectral with the -clique extension of the
triangular graph is exactly the -clique extension of the triangular
graph .Comment: arXiv admin note: text overlap with arXiv:1806.0359
- …